An Empirical Study of the Reliability of High-Level Synthesis Tools

Yann Herklotz, Zewei Du, Nadesh Ramanathan, and John Wickerson
Imperial College London, UK
Email: {yann.herklotz15, zewei.du19, n.ramanathan14, j.wickerson}@imperial.ac.uk

Abstract—High-level synthesis (HLS) is becoming an increasingly important part of the computing landscape, even in safety-critical domains where correctness is key. As such, HLS tools are increasingly relied upon. But are they trustworthy?

We have subjected four widely used HLS tools – LegUp, Xilinx Vivado HLS, the Intel HLS Compiler and Bambu – to a rigorous fuzzing campaign using thousands of random, valid C programs that we generated using a modified version of the Csmith tool. For each C program, we compiled it to a hardware design using the HLS tool under test and checked whether that hardware design generates the same output as an executable generated by the GCC compiler. When discrepancies arose between GCC and the HLS tool under test, we reduced the C program to a minimal example in order to zero in on the potential bug. Our testing campaign has revealed that all four HLS tools can be made to generate wrong designs from valid C programs and one tool could be made to crash; this underlines the need for these increasingly trusted tools to be more rigorously engineered. Out of 6700 test-cases, we found 1191 programs that caused at least one tool to fail, out of which we were able to discern at least 8 unique bugs.

I. INTRODUCTION

High-level synthesis (HLS), which refers to the automatic translation of software into hardware, is becoming an important part of the computing landscape, even in such high-assurance settings as financial services [1], control systems [2], and real-time object detection [3]. The appeal of HLS is twofold: it promises hardware engineers an increase in productivity by raising the abstraction level of their designs, and it promises software engineers the ability to produce application-specific hardware accelerators without having to understand Verilog or VHDL.

As such, we are increasingly reliant on HLS tools. But are these tools reliable? Questions have been raised about the reliability of HLS before; for example, Andrew Canis, co-creator of the LegUp HLS tool, wrote that “high-level synthesis research and development is inherently prone to introducing bugs or regressions in the final circuit functionality” [4] Section 3.4.6]. In this paper, we investigate whether there is substance to this concern by conducting an empirical evaluation of the reliability of several widely used HLS tools.

The approach we take is fuzzing. This is an automated testing method in which randomly generated programs are given to compilers to test their robustness [5], [6], [7], [8], [9], [10]. The generated programs are typically large and rather complex, and they often combine language features in ways that are legal but counter-intuitive; hence they can be effective at exercising corner cases missed by human-designed test suites. Fuzzing has been used extensively to test conventional compilers; for example, Yang et al. [9] used it to reveal more than three hundred bugs in GCC and LLVM. In this paper, we bring fuzzing to the HLS context.

Example 1 (A miscompilation bug in Vivado HLS). Figure 1 shows a program that produces the wrong result during RTL simulation in Xilinx Vivado HLS v2018.3, v2019.1 and v2019.2[4] The program repeatedly shifts a large integer value \(x \) right by the values stored in array \(arr \). Vivado HLS returns 0x006535FF, but the result returned by GCC (and subsequently confirmed manually to be the correct one) is 0x046535FF. The bug was initially revealed by a randomly generated program of around 113 lines, which we were able to reduce to the minimal example shown in the figure. We reported this issue to Xilinx, who confirmed it to be a bug.

The example above demonstrates the effectiveness of fuzzing. It seems unlikely that a human-written test-suite would discover this particular bug, given that it requires several components all to coincide before the bug is revealed. If the loop is unrolled, or the seemingly random value of \(b \) is simplified, or the array is declared with fewer than six elements (even though only two are accessed), then the bug goes away.

Yet this example also begs the question: do bugs found by fuzzers really matter, given that they are usually found by combining language features in ways that are vanishingly unlikely to happen “in the real world” [11]. This question is especially pertinent for our particular context of HLS tools, which are well-known to have restrictions on the language

\begin{verbatim}
1 unsigned int x = 0x1194D7FF;
2 int arr[6] = {1, 1, 1, 1, 1, 1};
3 int main()
4 { for (int i = 0; i < 2; i++)
5 x = x >> arr[i];
6 return x;
7 }
\end{verbatim}

Figure 1. Miscompilation bug in Xilinx Vivado HLS. The generated RTL returns 0x006535FF but the correct result is 0x046535FF.
features they support. Nevertheless, although the test-cases we generated do not resemble the programs that humans write, the bugs that we exposed using those test-cases are real, and could also be exposed by realistic programs.

Ultimately, we believe that any errors in an HLS tool are worth identifying because they have the potential to cause problems – either now or in the future. And problems caused by HLS tools going wrong (or indeed any sort of compiler for that matter) are particularly egregious, because it is so difficult for end-users to identify whether the fault lies with their design or the HLS tool.

A. Our approach and results
Our approach to fuzzing HLS tools comprises three steps. First, we use Csmith to generate thousands of valid C programs within the subset of the C language that is supported by all the HLS tools we test. We also augment each program with a random selection of HLS-specific directives. Second, we give these programs to four widely used HLS tools: Xilinx Vivado HLS, LegUp HLS, the Intel HLS Compiler, also known as i++ and finally Bambu. Third, if we find a program that causes an HLS tool to crash or to generate hardware that produces a different result from GCC, we reduce it to a minimal example with the help of C-Reduce.

Our testing campaign revealed that all four tools could be made to generate an incorrect design. In total, 6700 test-cases were run through each tool, of which 1191 failed in at least one of the tools. Test-case reduction was then performed on some of these failing test-cases to obtain at least 8 unique failing test-cases, detailed on our companion webpage: https://ymherklots.github.io/fuzzing-hls/

To investigate whether HLS tools are getting more or less reliable, we also tested three different versions of Vivado HLS (v2018.3, v2019.1, and v2019.2). We found fewer failures in v2019.1 and v2019.2 compared to v2018.3, but also identified a few test-cases that only failed in v2019.1 and v2019.2; this suggests that new features may have introduced bugs.

In summary, the overall aim of our paper is to raise awareness about the reliability (or lack thereof) of current HLS tools, and to serve as a call-to-arms for investment in better-engineered tools. We hope that future work on developing more reliable HLS tools will find our empirical study a valuable source of motivation.

II. RELATED WORK
The only other work of which we are aware on fuzzing HLS tools is that by Lidbury et al. who tested several OpenCL compilers, including an HLS compiler from Altera (now Intel). They were only able to subject that compiler to superficial testing because so many of the test-cases they generated led to it crashing. In comparison to our work: where Lidbury et al. generated target-independent OpenCL programs for testing HLS tools and conventional compilers alike, we generate programs that are tailored for HLS (e.g. with HLS-specific pragmas and only including supported constructs) with the aim of testing the HLS tools more deeply. Another difference is that where we test using sequential C programs, they test using highly concurrent OpenCL programs, and thus have to go to great lengths to ensure that any discrepancies observed between compilers cannot be attributed to the inherent nondeterminism of concurrency.

Other stages of the FPGA toolchain have been subjected to fuzzing. In previous work, we tested several FPGA synthesis tools using randomly generated Verilog programs. Where that work concentrated on the RTL-to-netlist stage of hardware design, this work focuses on the C-to-RTL stage.

Several authors have taken steps toward more rigorously engineered HLS tools that may be more resilient to testing campaigns such as ours. The Handel-C compiler by Perna and Woodcock has been mechanically proven correct, at least in part, using the HOL theorem prover; however, the tool does not support C as input, so is not amenable to fuzzing. Ramanathan et al. proved their implementation of C atomic operations in LegUp correct up to a bound using model checking; however, our testing campaign is not applicable to their implementation because we do not generate concurrent C programs. In the SPARK HLS tool, some compiler passes, such as scheduling, are mechanically validated during compilation; unfortunately, this tool is no longer available. Finally, the Catapult C HLS tool is designed only to produce an output netlist if it can mechanically prove it equivalent to the input program; it should therefore never produce wrong RTL. In future work, we intend to test Catapult C alongside Vivado HLS, LegUp, Intel i++, and Bambu.

III. METHOD
The overall flow of our testing approach is shown in Figure 2. This section describes how test-cases are generated (§III-A), executed (§III-B), and reduced (§III-C).

A. Generating test-cases
Csmith exposes several parameters through which the user can adjust how often various C constructs appear in the randomly generated programs. Table 1 describes how we configure these parameters. Our overarching aim is to make the programs tricky for the tools to handle correctly (to maximise our chance of exposing bugs), while keeping the synthesis and simulation times low (to maximise the rate at which tests can be run). For instance, we increase the probability of generating if statements to increase the number of control
paths, but we reduce the probability of generating for loops and array operations since they generally increase run times but not hardware complexity. We disable various features that are not supported by HLS tools such as assignments inside expressions, pointers, and union types. We avoid floating-point numbers since these often involve external libraries or IPs on FPGAs, which make it hard to reduce bugs to a minimal form.

To prepare the programs generated by Csmith for HLS testing, we modify them in two ways. First, we inject random HLS directives, which instruct the HLS tool to perform certain optimisations, including: loop pipelining, loop unrolling, loop flattening, loop merging, expression balancing, function pipelining, function-level loop merging, function inlining, array mapping, array partitioning, and array reshaping. Some directives can be applied via a separate configuration file (.tcl), some require us to add labels to the C program (e.g. to identify loops), and some require placing pragmas at particular locations in the C program.

The second modification has to do with the top-level function. Each program generated by Csmith ends its execution by printing a hash of all its variables’ values, hoping that miscompilations will be exposed through this hash value. Csmith’s built-in hash function leads to infeasibly long simulation times, so we replace it with a simple XOR-based one.

Finally, we generate a synthesisable testbench that executes the main function of the original C program, and a tool-specific script that instructs the HLS tool to create a design project and then build and simulate the design.

B. Compiling the test-cases using the HLS tools

For each HLS tool in turn, we compile the C program to RTL and then simulate the RTL. We also compile the C program using GCC and execute it. To ensure that our testing scales to large programs, we enforce several time-outs: we set a 5-minute time-out for C execution and a 2-hour time-out for C-to-RTL synthesis and RTL simulation.

C. Reducing buggy programs

Once we discover a program that crashes the HLS tool or whose C/RTL simulations do not match, we systematically reduce it to its minimal form using the C-Reduce tool [16], in the hope of identifying the root cause. This is done by successively removing or simplifying parts of the program, checking that the bug remains at each step. We also check at each stage of the reduction process that the reduced program remains within the subset of the language that is supported by the HLS tools; without this check, we found that C-Reduce kept zeroing in on programs that were outside this subset and hence did not represent real bugs.

IV. Evaluation

We generate 6700 test-cases and provide them to four HLS tools: Vivado HLS, LegUp HLS, Intel i++, and Bambu. We use the same test-cases across all tools for fair comparison (except the HLS directives, which have tool-specific syntax). We were able to test three different versions of Vivado HLS (v2018.3, v2019.1 and v2019.2). We tested one version of Intel i++ (included in Quartus Lite 18.1), LegUp (4.0) and two versions of Bambu (v0.9.7, v0.9.7-dev).

A. Results across different HLS tools

Figure 3 shows an Euler diagram of our results. We see that 918 (13.7%), 167 (2.5%), 83 (1.2%) and 26 (0.4%) test-cases fail in Bambu, LegUp, Vivado HLS and Intel i++ respectively. The bugs we reported to the Bambu developers were fixed during our testing campaign, so we also tested the development branch of Bambu (0.9.7-dev) with the bug fixes, and found only 17 (0.25%) failing test-cases remained. Although i++ has a low failure rate, it has the highest time-out rate (540 test-cases) due to its remarkably long compilation time. No other tool had more than 20 time-outs. Note that the absolute numbers here do not necessarily correspond to the number of bugs in the tools, because a single bug in a language feature that appears frequently in our test suite could cause many failures. Moreover, we are reluctant to draw conclusions about the relative reliability of each tool by comparing the number of failures, because these numbers are so sensitive to the parameters of the randomly generated test suite we used. In other words, we can confirm the presence of bugs, but cannot deduce the number of them (nor their importance).
We have reduced several of the failing test-cases in an effort to identify particular bugs, and our findings are summarised in Table II. We emphasise that the bug counts here are lower bounds – we did not have time to go through the arduous test-case reduction process for every failure. Figures 4, 5, and 6 present three of the bugs we found. As in Example 1, each bug was first reduced automatically using C-Reduce, and then further reduced manually to achieve the minimal test-case.

B. Results across versions of an HLS tool

Besides studying the reliability of different HLS tools, we also studied the reliability of Vivado HLS over time. Figure 7 shows the results of giving 3645 test-cases to Vivado HLS v2018.3, v2019.1 and v2019.2. Test-cases that pass and fail in the same tools are grouped together into a ribbon. For instance, the topmost ribbon represents the 31 test-cases that fail in all three versions of Vivado HLS. Other ribbons can be seen weaving in and out; these indicate that bugs were fixed or reintroduced in the various versions. Interestingly, the blue ribbon shows that there are test-cases that fail in v2018.3, pass in v2019.1, and then fail again in v2019.2! As in our Euler diagram, the numbers do not necessary correspond to the number of actual bugs, though we can observe that there must be at least six unique bugs in Vivado HLS, given that each ribbon corresponds to at least one unique bug. This method of identifying unique bugs is similar to the “correcting commits” metric introduced by Chen et al. [23].

V. CONCLUSION

We have shown how an existing fuzzing tool can be modified so that its output is suitable for HLS, and then used it in a campaign to test the reliability of four modern HLS tools. In total, we found at least 8 unique bugs across all the tools, including both crashes and miscompilations. Further work could be done on supporting more HLS tools, especially those that claim to prove that their output is correct before terminating, such as Catapult C [22].

Conventional compilers have become quite resilient to fuzzing over the last decade, so recent work on fuzzing compilers has had to employ increasingly imaginative techniques to keep finding new bugs [24]. In contrast, we have found that HLS tools can be made to exhibit bugs even using the relatively basic fuzzing techniques employed in this project. We hope that this work further motivates the need for rigorous engineering of HLS tools, whether that is by validating that each output the tool produces is correct or by proving the HLS tool itself correct once and for all.

ACKNOWLEDGEMENTS

We thank Alastair F. Donaldson for helpful feedback. We acknowledge financial support from the Research Institute on Verified Trustworthy Software Systems (VeTSS), which is funded by the UK National Cyber Security Centre (NCSC).

Figure 7. A Sankey diagram that tracks 3645 test-cases through three different versions of Vivado HLS. The ribbons collect the test-cases that pass and fail together. The black bars are labelled with the total number of test-case failures per version. The 3573 test-cases that pass in all three versions are not depicted.
REFERENCES

