Swiss Verification Day 2025

Reasoning about out-of-order execution
in dataflow circuits

Yann Herklotz, Ayatallah Elakhras, Martina Camaioni, Lana Josipovic, Paolo lenne, Thomas
Bourgeat

February 13, 2025

VA EPFL

High-level synthesis with dataflow graphs

for (int i = 0; i < N; i++) { |

result[i] = gcd(arri[i], arr2[i]); Mox T —initl——
} I_I_I__l
ld1 ld2 <N-1
= —
o , GCD
Dynamic high-level synthesis tools +1
3 | — |
tr_ansllate C code into dataflow S
circuits. |

max 1 GCD operation at a time.

High-level synthesis with dataflow graphs

for (int i = 0; i < N/2; i++) {
result[2+i] =
gcd(arri[2+i], arr2[2+i]);
result[2*i+1] =

gcd(arri[2+i+1], arr2[2+i+1]);

Dynamic high-level synthesis tools
translate C code into dataflow
circuits.

Manual optimisations can help
throughput.

Mux /' —— init|—
—T—
+1 x2 <N/2 -1
ld1 [d2 [d1 [d2
— —
GCD GCD
+1
| | |
B .
| L |

up to 2 GCD operation at a time.

Out-of-order in dataflow circuits

We can generalise the arbiter idea by ld1/ |ld2 <N—1
: — — L

defining and out-of-order GCD
component. *
A more general tagger/untagger pair &CD 000
keeps track of the correct order of
tokens '

| — I

s

g —

n GCD operation at a time.

https://doi.org/10.1145/3626202.3637556

Out-of-order in dataflow circuits

We can generalise the arbiter idea by
defining and out-of-order GCD
component.

A more general tagger/untagger pair
keeps track of the correct order of
tokens.

Systematic approach developed by
the Dynamatic lab.

FpG 4 ,24

Ehabli,,

4y, g
alpy, 5 ore Oug Sy, g

/,.u,,d”n gy gy of. vay of
< Sy, “Or, th,
S gl s, g, Gl .“les
ey S il Lauggp 0y Ml Cu, K
€t g, Pory,, St gy SWityeyy Wall
Utig, MOl ' “Clang ag.
or
e o

Tre,, .
Witz cu;
g, tly » ts
in) “lo g,

Epgy e

asg
culy,
ley

Lay,
29

Sheqyy, bl o

g
Uiy it " g ;

€ 00 e e S 11, /)J' i,
it s, e gy e o

e S e €
e ULy Meryy ' iy
Cirey© the

Uit

7
ar, I gy, Pite
oy Bictoy 1 vagio P e era Dy
g ey, Mious o Necuy, iy 1 o, M, By, S
|_ Unu Vel Py s o100 ety ot o, - i A
0esg o the jp €k, gy S s 7 o > Brog g -y g P,
B Y areq . Mitiy, ey g ity S 22l g, M the O Moty
o, lion he e By gy ety By e Periagh 5ed o) focy
ey gy e 73 Cop 7 g “Plo e acyy X oty 2ed
2 Beregsy 0l gy (17 0t ey Vat Paths
a o lore

e
of g etio
ang oty oF ow
| [— s Bt o 0y 7

g, o
o Mlcay,

ey o i st <Centy < ory o <Ssory_ el
ey s gyt *Hedygort Variy, sy Vs "
st l Bralfien i s
i g ey
b Ptz Ving

ey, o b, '€ 1

ey Bhag Otroy e

angy e sig, Oller

| L lengj, €ts
ang

n GCD operation at a time.

Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovic, and Paolo lenne. “Survival of the Fastest: Enabling More Out-of-Order Execution in Dataflow
Circuits”. In: Proceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA "24. Monterey, CA, USA: Association
for Computing Machinery, 2024, pp. 44-54. 1SBN: 9798400704185. pOI: 10.1145/3626202.3637556

https://doi.org/10.1145/3626202.3637556

Rewrites are a nice way to perform optimisations in a verified framework

GRAPHITI

EXPRHIGH

> EXPRLOW Started collaborating on
a verified dataflow
rewrite framework.

Dot graph

matcher — Subgraph =(rewrite

<«——— EXPRHIGH EXPRLOW

Rewrites are a nice way to perform optimisations in a verified framework

Dot graph

GRAPHITI

EXPRHIGH

matcher — Subgraph =(rewrite

<«———1 EXPRHIGH

* EXPRLOW

!

EXPRLOW

Started collaborating on
a verified dataflow
rewrite framework.

Use the rewrite
framework to implement
the FPGA"24 algorithm.

Quick overview of the syntax and semantics

Language descriptions
ExprHigh Graph language represented by sets of nodes and edges.

ExprLow Inductive graph language with products and connections.

Graph denotation and semantics

def join T T' : NatModule (List T x List T') :=
{ inputs := [(0, (T, fun ol el nl => nl.1 = ol.l.concat el /\ nl.2 = ol.2))
, (1, (T', fun ol el nl => nl.2 = ol.2.concat el /\ nl.1 = ol.1))].toAssoclList,
outputs := [(0, (T x T', fun ol el nl => ol.1 = el.1 :: nl.1 /\ ol.2 = el.2 :: nl.2))].toAssocList }

Top-level correctness theorem
(rwins U €) E (rwips 4 €) —
(e[rwins := rwins] 4 €) C (e) €)

In particular we only need one general rewrite replicate many of the FPGA'24
results

Given a loop over an

arbitrary loop body M.

N

o

In particular we only need one general rewrite replicate many of the FPGA'24

results

Given a sequential loop over an ' ‘

arbitrary loop body M. Tagger
We can generate an out-of-order \Mux / =
he . i
version of the loop by overlapping m = i
loop executions. | T ™
Split |
— Split
i
|
(-

Untagger

o

In particular we only need one general rewrite replicate many of the FPGA'24

results

Given a sequential loop over an ' ‘

arbitrary loop body M. Tagger
We can generate an out-of-order \Mux / =
he . i
version of the loop by overlapping m = i
loop executions. | T ™
.) Split |
Does this hold for an arbitrary -l Solit
module M? |
|
|55
— Untagger

o

In particular we only need one general rewrite replicate many of the FPGA'24

results

Given a sequential loop over an

arbitrary loop body M. Tagger
We can generate an out-of-order VMIE_|
version of the loop by overlapping Ry = i
loop executions. [Pure 1f
Does this hold for an arbitrary Split 3 ll't
module M? r |p ||_|
No, we need: | Branch
. . L1
1-in-1-out behaviour for the L Untagger
module.

It needs to be stateless.

Applying the rewrite to the GCD example

el A
\Mux /—\ Mux [— Initl— We : too many muxes

and branches, and we don’t know
m whether the body can be modelled

as a pure function.
_F o |

/ Branch \—/ Branch \——
I — e

Applying the rewrite to the GCD example

[
Join Join

e

\Mux /= init

I
Split
L

%
— 1= g
/ Branch \—/ Branch \———
L [

We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.

Combine muxes and branches.

Applying the rewrite to the GCD example

I
=

vy A [

We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.

Combine muxes and branches.

Applying the rewrite to the GCD example

= E——

\Mux /= Init|—
F We have a problem: too many muxes
and branches, and we don't know

— whether the body can be modelled
as a pure function.

%J Combine muxes and branches.
|'_ 20| Rgmove unnecessary splits and
Tom joins.

[Branch \————
[I

Split

| 6

Applying the rewrite to the GCD example

= ——

vy A (o

: We have a problem: too many muxes

and branches, and we don’t know
- whether the body can be modelled
L as a pure function.
o Combine muxes and branches.
— [ZolH Remove unnecessary splits and
Tom joins.

: Prove that the body of the loop is
' Branch \——

ur

I 6

=

Applying the rewrite to the GCD example

Split We have a problem: too many muxes
- jv?witijrntchheezoadn dc\;vr? SZ r;;]toléne(i[/(:d
as a pure functioB:].
%| Combine muxes and branches.
Remove unnecessary splits and
|7 joins.
Join Prove that the body of the loop is

| Pure: More rewrites!

Applying the rewrite to the GCD example

Split
We have a problem: too many muxes
PLUTE AX. (X, X) and branchpes, and we don’t Iinow
— whether the bo.dy can be modelled
Spiit as a pure function.
’_1 Combine muxes and branches.
% Remove unnecessary splits and

joins.

|7 Prove that the body of the loop is
Join Pure: More rewrites!

Applying the rewrite to the GCD example

Pure Ax.(fst x,(snd x,snd x))
| We have a problem: too many muxes

Split and branches, and we don’t know
-l whether the body can be modelled
‘ Split as a pure function.
—! Combine muxes and branches.
%J Remove unnecessary splits and
r joins.
Join Prove that the body of the loop is

| Pure: More rewrites!

Applying the rewrite to the GCD example

Pure M. ((fst x,snd x),snd x)

— We have a problem: too many muxes
Split and branches, and we don’t know
— whether the body can be modelled

Split as a pure function.

| Combine muxes and branches.

Remove unnecessary splits and
joins.

Join Prove that the body of the loop is
| Pure: More rewrites!

Applying the rewrite to the GCD example

| We : to0 many muxes
Pure Ax. ((fst x,snd x),snd x) and branches, and we don’t know
| whether the body can be modelled

Split as a pure function.
| - OO

Pure \x.fst x% snd x

muxes and branches.

unnecessary splits and

|
Join)

Prove that the body of the loop is
| Pure:

joins.

Applying the rewrite to the GCD example

|
Pure Ax. ((fst x,snd x),snd x) We : too many muxes
| and branches, and we don’t know
Pure M. (fst(fst x) % snd(fst x),snd x) whether the body can be modelled
| as a pure function.

Split muxes and branches.
. | a unnecessary splits and
Join joins.

| Prove that the body of the loop is
Pure:

Applying the rewrite to the GCD example

| We : too many muxes
pure M. ((fst x,snd x),snd x) and branches, and we don’t know
| whether the body can be modelled

Pure M. (fst(fst x) % snd(fst x),snd x) =5 & [PUITE MUNETIER:
| muxes and branches.
Pure Ax.(snd x,fst x) unnecessary splits and
| joins.
Prove that the body of the loop is
Pure:

Applying the rewrite to the GCD example

We : too many muxes
and branches, and we don’t know
whether the body can be modelled

| as a pure function.
Pure Ax.(snd x,fst x% snd x)

muxes and branches.
unnecessary splits and
joins.
Prove that the body of the loop is
Pure:

Finally we can parallelise our GCD!
[}

| Tagger
‘ Mux? 1 L
|

bure 3 ((snd x,fst x % snd x),) -
ure AX. =
fst x%snd x#£0 = Pure TAx. (snd x,fst x%snd x),
| fst x%snd x#0
R |
o=
Fork [
[
lBranchs '_|
Untagger
0
7

Hypothetical results

Benchmark N Cycle count CP (ns) Execution time (us) LUTs FFs DSPs
[18] Ours [18] Ours [18] Ours [18] Ours [18] Ours
img-avg 4 1,722 634 6.42 8.21 11.05 5.21 2.1x 1415 1,593 +13% 1,320 1,206 -9% 5
gsum_many 10 68,523 32,874 791 9.95 541.81 327.0 1.7x 2,835 3,657 +29% 3,256 3,725 +14% 22
gsum_single 10 6,703 9,333 690 9.01 46.25 84.11 0.55x 2,736 2,677 -2% 3,142 3,114 -1% 22
gemm 20 68,825 8,144 6.75 12.81 464.78 10430 4.5x 3,214 5937 +85% 2,693 3,688 +37% 11
matvec 50 7,936 918 6.41 13.51 50.86 12.40 4.1x 1,272 4,396 +246% 1373 3,423 +149% 5
mvt 10 7,940 2,044 6.27 11.70 49.79 2392 2.1x 2886 5544 +92% 2,701 3,730 +38% 10
bicg 10 7,936 1,000 6.43 11.27 51.06 11.27 4.5x 2,051 3,229 +57% 2,182 2,737 +25% 10

Table 1. Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovic, and Paolo lenne. “Survival of the Fastest: Enabling More Out-of-Order Execution in
Dataflow Circuits”. In: Proceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA '24. Monterey, CA, USA:
Association for Computing Machinery, 2024, pp. 44-54. 1SBN: 9798400704185. pol: 10.1145/3626202.3637556

https://doi.org/10.1145/3626202.3637556

Conclusion and future (current) work

Conclusion
We verify a rewrite framework for dataflow circuits in Lean 4.

We implement one main rewrite to introduce out-of-order execution.

Future work
Still a work in progress, finish proofs and gather proper results.
Develop better proof methods for verifying rewrites.

Hopeful we can extend the framework to other dataflow graphs (circuits?).

ut-of-order in dataflow circuits Rewrites are a nice way to perform optimisations in a verified framework
W] — [init
We can generalise the arbiter idea by
GRAPHITI
defining and out-of-order GCD
component. H—rrE— T Started collaborating on
a verified dataflow

|
A more general tagger/untagger pair
rewrite framework.

keeps track of the correct order of GCD_000 matcher = Subgraph =(rewrite

Dot graph

tokens, 7 Use the rewrite
5] EXPRHIGH |e————TExpRLOW framework to implement
! | the FPGA'24 algorithm.

cllicen)
|

Thanks! Any questions?

In particular we only need one general rewrite replicate many of the FPGA'24 Hypothetical results
results
r

Given a sequential loop over an ‘

arbitrary loop body M. Tagger Cycle count — CPns) Execution fime (1)
B 18 Ows (18] Ous [i5] Ours

We can generate an out-of-order : = = —— =
version of the loop by overlapping D e G705 9% oo oar 62 s
G w1 0 11 wans tois

loop executions. :
: ot o7 1170 w75 9
Does this hold for an arbitrary Tote i 5 s e

module M? = Statow s
Branch
)

10
5% w0

Survival of the Fastest: Enabling More Out-of-Order Execution in

No, we need:
1-in-1-out behaviour for the e
module.

It needs to be stateless

References i

@ Elakhras, Ayatallah, Andrea Guerrieri, Lana Josipovic, and Paolo lenne. “Survival of the Fastest:
Enabling More Out-of-Order Execution in Dataflow Circuits”. In: Proceedings of the 2024
ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA '24. Monterey, CA,
USA: Association for Computing Machinery, 2024, pp. 44-54. 1SBN: 9798400704185. DOI:
10.1145/3626202.3637556.

https://doi.org/10.1145/3626202.3637556

	Appendix

