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High-level synthesis with dataflow graphs
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High-level synthesis with dataflow graphs

for (int i = 0; i < N/2; i++) {
result[2+i] =
gcd(arri[2+i], arr2[2+i]);
result[2*i+1] =

gcd(arri[2+i+1], arr2[2+i+1]);

Dynamic high-level synthesis tools
translate C code into dataflow
circuits.

Manual optimisations can help
throughput.
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up to 2 GCD operation at a time.



Out-of-order in dataflow circuits
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Out-of-order in dataflow circuits

We can generalise the arbiter idea by
defining and out-of-order GCD
component.

A more general tagger/untagger pair
keeps track of the correct order of
tokens.

Systematic approach developed by
the Dynamatic lab.
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Rewrites are a nice way to perform optimisations in a verified framework
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> EXPRLOW Started collaborating on
a verified dataflow
rewrite framework.
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Rewrites are a nice way to perform optimisations in a verified framework

Dot graph

GRAPHITI

EXPRHIGH

matcher — Subgraph =(rewrite

<«———1 EXPRHIGH

* EXPRLOW

!

EXPRLOW

Started collaborating on
a verified dataflow
rewrite framework.

Use the rewrite
framework to implement
the FPGA"24 algorithm.



Quick overview of the syntax and semantics

Language descriptions
ExprHigh Graph language represented by sets of nodes and edges.

ExprLow Inductive graph language with products and connections.

Graph denotation and semantics

def join T T' : NatModule (List T x List T') :=
{ inputs := [ (0, ( T, fun ol el nl => nl.1 = ol.l.concat el /\ nl.2 = ol.2))
, (1, ( T', fun ol el nl => nl.2 = ol.2.concat el /\ nl.1 = ol.1))].toAssoclList,
outputs := [(0, ( T x T', fun ol el nl => ol.1 = el.1 :: nl.1 /\ ol.2 = el.2 :: nl.2 ))].toAssocList }

Top-level correctness theorem
(rwins U €) E (rwips 4 €) —
(e[rwins := rwins] 4 €) C (e ) €)



In particular we only need one general rewrite replicate many of the FPGA'24
results

Given a loop over an

arbitrary loop body M.
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In particular we only need one general rewrite replicate many of the FPGA'24

results

Given a sequential loop over an ' ‘
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In particular we only need one general rewrite replicate many of the FPGA'24

results
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In particular we only need one general rewrite replicate many of the FPGA'24

results

Given a sequential loop over an

arbitrary loop body M. Tagger
We can generate an out-of-order VMIE_|
version of the loop by overlapping Ry = i
loop executions. [ Pure 1f
Does this hold for an arbitrary Split 3 ll't
module M? r |p ||_|
No, we need: | Branch
. . L1
1-in-1-out behaviour for the L Untagger
module.

It needs to be stateless.



Applying the rewrite to the GCD example
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and branches, and we don’t know
m whether the body can be modelled

as a pure function.
\_F o |

/ Branch \—/ Branch \——
I — e




Applying the rewrite to the GCD example

[
Join Join

e

\Mux /= init
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Split
L
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We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.

Combine muxes and branches.



Applying the rewrite to the GCD example
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Applying the rewrite to the GCD example

= E——
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Applying the rewrite to the GCD example

= ——
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Applying the rewrite to the GCD example

Split We have a problem: too many muxes
- jv?witijrntchheezoadn dc\;vr? SZ r;;]toléne(i[/(:d
as a pure functioB:].
%| Combine muxes and branches.
Remove unnecessary splits and
|7 joins.
Join Prove that the body of the loop is

| Pure: More rewrites!



Applying the rewrite to the GCD example

Split
We have a problem: too many muxes
PLUTE AX. (X, X) and branchpes, and we don’t Iinow
— whether the bo.dy can be modelled
Spiit as a pure function.
’_1 Combine muxes and branches.
% Remove unnecessary splits and

joins.

|7 Prove that the body of the loop is
Join Pure: More rewrites!




Applying the rewrite to the GCD example

Pure Ax.(fst x,(snd x,snd x))
| We have a problem: too many muxes

Split and branches, and we don’t know
-l whether the body can be modelled
‘ Split as a pure function.
—! Combine muxes and branches.
%J Remove unnecessary splits and
r joins.
Join Prove that the body of the loop is

| Pure: More rewrites!



Applying the rewrite to the GCD example

Pure M. ((fst x,snd x),snd x)

— We have a problem: too many muxes
Split and branches, and we don’t know
— whether the body can be modelled

Split as a pure function.

| Combine muxes and branches.

Remove unnecessary splits and
joins.

Join Prove that the body of the loop is
| Pure: More rewrites!




Applying the rewrite to the GCD example

| We : to0 many muxes
Pure Ax. ((fst x,snd x),snd x) and branches, and we don’t know
| whether the body can be modelled

Split as a pure function.
| - OO

Pure \x.fst x% snd x

muxes and branches.

unnecessary splits and

|
Join )

Prove that the body of the loop is
| Pure:

joins.




Applying the rewrite to the GCD example

|
Pure Ax. ((fst x,snd x),snd x) We : too many muxes
| and branches, and we don’t know
Pure M. (fst(fst x) % snd(fst x),snd x) whether the body can be modelled
| as a pure function.

Split muxes and branches.
. | a unnecessary splits and
Join joins.

| Prove that the body of the loop is
Pure:



Applying the rewrite to the GCD example

| We : too many muxes
pure M. ((fst x,snd x),snd x) and branches, and we don’t know
| whether the body can be modelled

Pure M. (fst(fst x) % snd(fst x),snd x) =5 & [PUITE MUNETIER:
| muxes and branches.
Pure Ax.(snd x,fst x) unnecessary splits and
| joins.
Prove that the body of the loop is
Pure:



Applying the rewrite to the GCD example

We : too many muxes
and branches, and we don’t know
whether the body can be modelled

| as a pure function.
Pure Ax.(snd x,fst x% snd x)

muxes and branches.
unnecessary splits and
joins.
Prove that the body of the loop is
Pure:



Finally we can parallelise our GCD!
[}

| Tagger
‘ Mux? 1 L
|

bure 3 ((snd x,fst x % snd x),) -
ure AX. =
fst x%snd x#£0 = Pure TAx. (snd x,fst x%snd x),
| fst x%snd x#0
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Hypothetical results

Benchmark N Cycle count CP (ns) Execution time (us) LUTs FFs DSPs
[18]  Ours [18] Ours [18]  Ours [18] Ours [18] Ours
img-avg 4 1,722 634 6.42 8.21 11.05 5.21 2.1x 1415 1,593 +13% 1,320 1,206 -9% 5
gsum_many 10 68,523 32,874 791 9.95 541.81 327.0 1.7x 2,835 3,657 +29% 3,256 3,725 +14% 22
gsum_single 10 6,703 9,333 690 9.01 46.25 84.11 0.55x 2,736 2,677 -2% 3,142 3,114 -1% 22
gemm 20 68,825 8,144 6.75 12.81 464.78 10430 4.5x 3,214 5937 +85% 2,693 3,688 +37% 11
matvec 50 7,936 918 6.41 13.51 50.86 12.40 4.1x 1,272 4,396 +246% 1373 3,423 +149% 5
mvt 10 7,940 2,044 6.27 11.70 49.79 2392 2.1x 2886 5544 +92% 2,701 3,730 +38% 10
bicg 10 7,936 1,000 6.43 11.27 51.06 11.27 4.5x 2,051 3,229 +57% 2,182 2,737 +25% 10

Table 1. Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovic, and Paolo lenne. “Survival of the Fastest: Enabling More Out-of-Order Execution in
Dataflow Circuits”. In: Proceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA '24. Monterey, CA, USA:
Association for Computing Machinery, 2024, pp. 44-54. 1SBN: 9798400704185. pol: 10.1145/3626202.3637556
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Conclusion and future (current) work

Conclusion
We verify a rewrite framework for dataflow circuits in Lean 4.

We implement one main rewrite to introduce out-of-order execution.

Future work
Still a work in progress, finish proofs and gather proper results.
Develop better proof methods for verifying rewrites.

Hopeful we can extend the framework to other dataflow graphs (circuits?).
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Survival of the Fastest: Enabling More Out-of-Order Execution in
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module.
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