
Reasoning about out-of-order execution
in dataflow circuits

Yann Herklotz, Ayatallah Elakhras, Martina Camaioni, Lana Josipović, Paolo Ienne, Thomas
Bourgeat
February 13, 2025

VCA

High-level synthesis with dataflow graphs

for (int i = 0; i < N; i++) {
result[i] = gcd(arr1[i], arr2[i]);

}

Dynamic high-level synthesis tools
translate C code into dataflow
circuits.

Manual optimisations can help
throughput.

GCD

< N− 1ld1 ld2

st Branch

Mux init

+1

max 1 GCD operation at a time.

1

High-level synthesis with dataflow graphs

for (int i = 0; i < N/2; i++) {
result[2*i] =
gcd(arr1[2*i], arr2[2*i]);

result[2*i+1] =
gcd(arr1[2*i+1], arr2[2*i+1]);

}
Dynamic high-level synthesis tools
translate C code into dataflow
circuits.
Manual optimisations can help
throughput.

GCD

< N/2− 1

ld1 ld2

st Branch

Mux init

+1

ld1 ld2

×2+1

st

GCD

up to 2 GCD operation at a time.

1

Out-of-order in dataflow circuits

We can generalise the arbiter idea by
defining and out-of-order GCD
component.
A more general tagger/untagger pair
keeps track of the correct order of
tokens.

Systematic approach developed by
the Dynamatic lab.

GCD_OOO

< N− 1ld1 ld2

st Branch

Mux init

+1

Tagger

Untagger

n GCD operation at a time.

Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovic, and Paolo Ienne. “Survival of the Fastest: Enabling More Out-of-Order Execution in Dataflow
Circuits”. In: Proceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA ’24. Monterey, CA, USA: Association
for Computing Machinery, 2024, pp. 44–54. isbn: 9798400704185. doi: 10.1145/3626202.3637556

Survival of the Fastest:

Enabling More Out-of-Order Execution in Dataflow Circuits

Ayatallah ElakhrasEPFLLausanne, Switzerland
Andrea Guerrieri

EPFL, HES-SO Valais-Wallis

Lausanne, Switzerland Lana JosipovićETH Zurich
Zurich, Switzerland Paolo IenneEPFLLausanne, Switzerland

ABSTRACTDynamically scheduled HLS, through dataflow circuit generation,

has proven successful at exploiting operation-level parallelism in

several important situations where statically scheduled HLS fails.

Yet, although existing dataflow circuits support out-of-order exe-

cution of different operations, they strictly confine successive in-

stances of the same operation to execute sequentially in program

order, which drastically affects the circuit’s performance in the

presence of a long-latency operation. This is in stark contrast with

the reordering freedom customary in superscalar processors that

naturally exploit qualitatively more parallelism in a broad class of

applications. The goal of this work is to produce dataflow circuits

that have reordering capabilities closer to those of out-of-order

superscalar processors. This can bring dramatic improvements in

some practically important cases, including when outer iterations

in nested loops are independent and the inner loop execution has

an unavoidable large initiation interval. In various cases, our tech-

nique increases throughput by a factor dependent on the initiation

interval of the kernel, at a comparatively modest area cost.

CCS CONCEPTS
• Computer systems organization→ Data flow architectures.

KEYWORDShigh-level synthesis, dataflow, out-of-order execution

ACM Reference Format:

Ayatallah Elakhras, Andrea Guerrieri, Lana Josipović, and Paolo Ienne. 2024.

Survival of the Fastest: Enabling More Out-of-Order Execution in Dataflow

Circuits. In Proceedings of the 2024 ACM/SIGDA International Symposium on

Field Programmable Gate Arrays (FPGA ’24), March 3–5, 2024, Monterey, CA,

USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3626202.

3637556

1 INTRODUCTION

Reconfigurable computing, predominantly realized through FPGAs,

represents a form of spatial computing that holds the potential to

deliver much-needed performance and energy advantages while

the computing industry grapples with the challenges of technology

scaling. A typical practical requirement is to compile optimized

production code, often developed in C/C++, into efficient circuits—a

This work is licensed under a Creative Commons Attribution

International 4.0 License.

FPGA ’24, March 3–5, 2024, Monterey, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0418-5/24/03

https://doi.org/10.1145/3626202.3637556

task usually referred to as high-level synthesis (HLS). The true diffi-

culty in this process lies in creating circuits that harness operation-

level parallelism beyond the levels achieved by traditional CPUs,

as parallelism is a pivotal factor in achieving high performance.

CPUs have achieved an impressive level of sophistication in exploit-

ing instruction-level parallelism through superscalar out-of-order

execution. Competing with them is a formidable endeavour.

1.1 Dynamically Scheduled HLS

Traditional HLS [11, 12], since the nineties, has mostly focused

on statically scheduled circuits, typically composed of datapaths

and finite-state machines controlling the periodic activation of the

datapath components. Broadly, they exploit operation parallelism

similar to very long instruction word (VLIW) processors. Alas, for

programswith irregular control flow andmemory accesses, they are

not very effective. Therefore, more recently, various authors studied

the production of dynamically scheduled circuits by reviving the

idea of dataflow circuits—that is, circuits without central controllers

and where operators are connected through handshake signals and

are activated by the availability of new operands.

Arguably, dataflow circuits are the “superscalars” of HLS [2, 30],

but this only is partially true: Although they allow for the dynamic

reordering of different operations, depending on operator availabil-

ity and like out-of-order superscalar processors, their construction

forces execution instances of an operation (e.g., in a loop kernel)

to follow strictly program order, which significantly limits their

performance. For instance, common dataflow circuits cannot use

nonblocking caches [20], which can return later cache hits before

earlier misses, whereas all modern processors do.

Our goal is to produce dataflow circuits that have reordering

capabilities closer to those of out-of-order superscalar processors

Figure 1: A Simple Dataflow Circuit. Edges between components

represent communication channels with handshake signals. The left

part of the circuit computes the iterator i and the right part con-

sumes it to perform the accumulation. Real circuits typically employ

MUXes instead of MERGEs, for reasons explained in Section 2.2.

44

FPGA’24

2

https://doi.org/10.1145/3626202.3637556

Out-of-order in dataflow circuits

We can generalise the arbiter idea by
defining and out-of-order GCD
component.
A more general tagger/untagger pair
keeps track of the correct order of
tokens.
Systematic approach developed by
the Dynamatic lab.

GCD_OOO

< N− 1ld1 ld2

st Branch

Mux init

+1

Tagger

Untagger

n GCD operation at a time.
Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovic, and Paolo Ienne. “Survival of the Fastest: Enabling More Out-of-Order Execution in Dataflow
Circuits”. In: Proceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA ’24. Monterey, CA, USA: Association
for Computing Machinery, 2024, pp. 44–54. isbn: 9798400704185. doi: 10.1145/3626202.3637556

Survival of the Fastest:

Enabling More Out-of-Order Execution in Dataflow Circuits

Ayatallah ElakhrasEPFLLausanne, Switzerland
Andrea Guerrieri

EPFL, HES-SO Valais-Wallis

Lausanne, Switzerland Lana JosipovićETH Zurich
Zurich, Switzerland Paolo IenneEPFLLausanne, Switzerland

ABSTRACTDynamically scheduled HLS, through dataflow circuit generation,

has proven successful at exploiting operation-level parallelism in

several important situations where statically scheduled HLS fails.

Yet, although existing dataflow circuits support out-of-order exe-

cution of different operations, they strictly confine successive in-

stances of the same operation to execute sequentially in program

order, which drastically affects the circuit’s performance in the

presence of a long-latency operation. This is in stark contrast with

the reordering freedom customary in superscalar processors that

naturally exploit qualitatively more parallelism in a broad class of

applications. The goal of this work is to produce dataflow circuits

that have reordering capabilities closer to those of out-of-order

superscalar processors. This can bring dramatic improvements in

some practically important cases, including when outer iterations

in nested loops are independent and the inner loop execution has

an unavoidable large initiation interval. In various cases, our tech-

nique increases throughput by a factor dependent on the initiation

interval of the kernel, at a comparatively modest area cost.

CCS CONCEPTS
• Computer systems organization→ Data flow architectures.

KEYWORDShigh-level synthesis, dataflow, out-of-order execution

ACM Reference Format:

Ayatallah Elakhras, Andrea Guerrieri, Lana Josipović, and Paolo Ienne. 2024.

Survival of the Fastest: Enabling More Out-of-Order Execution in Dataflow

Circuits. In Proceedings of the 2024 ACM/SIGDA International Symposium on

Field Programmable Gate Arrays (FPGA ’24), March 3–5, 2024, Monterey, CA,

USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3626202.

3637556

1 INTRODUCTION

Reconfigurable computing, predominantly realized through FPGAs,

represents a form of spatial computing that holds the potential to

deliver much-needed performance and energy advantages while

the computing industry grapples with the challenges of technology

scaling. A typical practical requirement is to compile optimized

production code, often developed in C/C++, into efficient circuits—a

This work is licensed under a Creative Commons Attribution

International 4.0 License.

FPGA ’24, March 3–5, 2024, Monterey, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0418-5/24/03

https://doi.org/10.1145/3626202.3637556

task usually referred to as high-level synthesis (HLS). The true diffi-

culty in this process lies in creating circuits that harness operation-

level parallelism beyond the levels achieved by traditional CPUs,

as parallelism is a pivotal factor in achieving high performance.

CPUs have achieved an impressive level of sophistication in exploit-

ing instruction-level parallelism through superscalar out-of-order

execution. Competing with them is a formidable endeavour.

1.1 Dynamically Scheduled HLS

Traditional HLS [11, 12], since the nineties, has mostly focused

on statically scheduled circuits, typically composed of datapaths

and finite-state machines controlling the periodic activation of the

datapath components. Broadly, they exploit operation parallelism

similar to very long instruction word (VLIW) processors. Alas, for

programswith irregular control flow andmemory accesses, they are

not very effective. Therefore, more recently, various authors studied

the production of dynamically scheduled circuits by reviving the

idea of dataflow circuits—that is, circuits without central controllers

and where operators are connected through handshake signals and

are activated by the availability of new operands.

Arguably, dataflow circuits are the “superscalars” of HLS [2, 30],

but this only is partially true: Although they allow for the dynamic

reordering of different operations, depending on operator availabil-

ity and like out-of-order superscalar processors, their construction

forces execution instances of an operation (e.g., in a loop kernel)

to follow strictly program order, which significantly limits their

performance. For instance, common dataflow circuits cannot use

nonblocking caches [20], which can return later cache hits before

earlier misses, whereas all modern processors do.

Our goal is to produce dataflow circuits that have reordering

capabilities closer to those of out-of-order superscalar processors

Figure 1: A Simple Dataflow Circuit. Edges between components

represent communication channels with handshake signals. The left

part of the circuit computes the iterator i and the right part con-

sumes it to perform the accumulation. Real circuits typically employ

MUXes instead of MERGEs, for reasons explained in Section 2.2.

44

FPGA’24

2

https://doi.org/10.1145/3626202.3637556

Rewrites are a nice way to perform optimisations in a verified framework

Do
t g
ra
ph

ExprHigh ExprLow

matcher rewrite

ExprHigh ExprLow

Subgraph

Graphiti

Verified in Lean 4Unverified

Started collaborating on
a verified dataflow
rewrite framework.

Use the rewrite
framework to implement
the FPGA’24 algorithm.

3

Rewrites are a nice way to perform optimisations in a verified framework

Do
t g
ra
ph

ExprHigh ExprLow

matcher rewrite

ExprHigh ExprLow

Subgraph

Graphiti

Verified in Lean 4Unverified

Started collaborating on
a verified dataflow
rewrite framework.
Use the rewrite
framework to implement
the FPGA’24 algorithm.

3

Quick overview of the syntax and semantics

Language descriptions

ExprHigh Graph language represented by sets of nodes and edges.
ExprLow Inductive graph language with products and connections.

Graph denotation and semantics
def join T T' : NatModule (List T × List T') :=

{ inputs := [(0, (T, fun ol el nl => nl.1 = ol.1.concat el /\ nl.2 = ol.2))
, (1, (T', fun ol el nl => nl.2 = ol.2.concat el /\ nl.1 = ol.1))].toAssocList,

outputs := [(0, (T × T', fun ol el nl => ol.1 = el.1 :: nl.1 /\ ol.2 = el.2 :: nl.2))].toAssocList }

Top-level correctness theorem

(rwrhs ⇓ ε) v (rwlhs ⇓ ε) →
(e[rwlhs := rwlhs] ⇓ ε) v (e ⇓ ε)

4

In particular we only need one general rewrite replicate many of the FPGA’24
results

Given a sequential loop over an
arbitrary loop body M.

We can generate an out-of-order
version of the loop by overlapping
loop executions.
Does this hold for an arbitrary
module M?
No, we need:

1-in-1-out behaviour for the
module.
It needs to be stateless.

Mux

M

Split

Branch

Fork

In
it

i

o

Merge

↑M

Split

Branch

Tagger

Untagger

i

o

5

In particular we only need one general rewrite replicate many of the FPGA’24
results

Given a sequential loop over an
arbitrary loop body M.
We can generate an out-of-order
version of the loop by overlapping
loop executions.

Does this hold for an arbitrary
module M?
No, we need:

1-in-1-out behaviour for the
module.
It needs to be stateless.

Mux

M

Split

Branch

Fork

In
it

i

o

Merge

↑M

Split

Branch

Tagger

Untagger

i

o
5

In particular we only need one general rewrite replicate many of the FPGA’24
results

Given a sequential loop over an
arbitrary loop body M.
We can generate an out-of-order
version of the loop by overlapping
loop executions.
Does this hold for an arbitrary
module M?

No, we need:
1-in-1-out behaviour for the
module.
It needs to be stateless.

Mux

M

Split

Branch

Fork

In
it

i

o

Merge

↑M

Split

Branch

Tagger

Untagger

i

o
5

In particular we only need one general rewrite replicate many of the FPGA’24
results

Given a sequential loop over an
arbitrary loop body M.
We can generate an out-of-order
version of the loop by overlapping
loop executions.
Does this hold for an arbitrary
module M?
No, we need:

1-in-1-out behaviour for the
module.
It needs to be stateless.

Mux

Pure f

Split

Branch

Fork

In
it

i

o

Merge

Pure ↑f

Split

Branch

Tagger

Untagger

i

o
5

Applying the rewrite to the GCD example

Fork

%

6= 0

Branch Branch

Mux Mux Init We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.

Combine muxes and branches.
Remove unnecessary splits and
joins.
Prove that the body of the loop is
Pure: More rewrites!

6

Applying the rewrite to the GCD example

Fork

%

6= 0

Branch Branch

Mux Init

Split

Join Join

We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.
Combine muxes and branches.

Remove unnecessary splits and
joins.
Prove that the body of the loop is
Pure: More rewrites!

6

Applying the rewrite to the GCD example

Fork

%

6= 0

Branch

Mux Init

Split

Join Join

Join

Split Split

We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.
Combine muxes and branches.

Remove unnecessary splits and
joins.
Prove that the body of the loop is
Pure: More rewrites!

6

Applying the rewrite to the GCD example

Fork

%

6= 0

Branch

Mux Init

Split

Join

Join

Split

We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.
Combine muxes and branches.
Remove unnecessary splits and
joins.

Prove that the body of the loop is
Pure: More rewrites!

6

Applying the rewrite to the GCD example

Fork

%

6= 0

Branch

Mux Init

Split

Join

Join

Split

We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.
Combine muxes and branches.
Remove unnecessary splits and
joins.
Prove that the body of the loop is
Pure: More rewrites!

6

Applying the rewrite to the GCD example

Fork

%

Split

Join

We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.
Combine muxes and branches.
Remove unnecessary splits and
joins.
Prove that the body of the loop is
Pure: More rewrites!

6

Applying the rewrite to the GCD example

Pure λx. (x, x)

%

Split

Join

Split

We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.
Combine muxes and branches.
Remove unnecessary splits and
joins.
Prove that the body of the loop is
Pure: More rewrites!

6

Applying the rewrite to the GCD example

Pure λx. (fst x, (snd x,snd x))

%

Split

Join

Split

We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.
Combine muxes and branches.
Remove unnecessary splits and
joins.
Prove that the body of the loop is
Pure: More rewrites!

6

Applying the rewrite to the GCD example

Pure λx. ((fst x,snd x),snd x)

%

Split

Join

Split

We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.
Combine muxes and branches.
Remove unnecessary splits and
joins.
Prove that the body of the loop is
Pure: More rewrites!

6

Applying the rewrite to the GCD example

Pure λx. ((fst x,snd x),snd x)

Pure λx.fst x% snd x

Join

Split

We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.
Combine muxes and branches.
Remove unnecessary splits and
joins.
Prove that the body of the loop is
Pure: More rewrites!

6

Applying the rewrite to the GCD example

Pure λx. ((fst x,snd x),snd x)

Pure λx. (fst(fst x) % snd(fst x),snd x)

Join

Split

We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.
Combine muxes and branches.
Remove unnecessary splits and
joins.
Prove that the body of the loop is
Pure: More rewrites!

6

Applying the rewrite to the GCD example

Pure λx. ((fst x,snd x),snd x)

Pure λx. (fst(fst x) % snd(fst x),snd x)

Pure λx. (snd x,fst x)

We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.
Combine muxes and branches.
Remove unnecessary splits and
joins.
Prove that the body of the loop is
Pure: More rewrites!

6

Applying the rewrite to the GCD example

Pure λx. (snd x,fst x% snd x)

We have a problem: too many muxes
and branches, and we don’t know
whether the body can be modelled
as a pure function.
Combine muxes and branches.
Remove unnecessary splits and
joins.
Prove that the body of the loop is
Pure: More rewrites!

6

Finally we can parallelise our GCD!

Mux

Pure λx.
(
(snd x,fst x% snd x),
fst x% snd x 6= 0

)

Split

Branch

Fork

In
it

i

o

Merge

Pure ↑λx.
(
(snd x,fst x% snd x),
fst x% snd x 6= 0

)

Split

Branch

Tagger

Untagger

i

o
7

Hypothetical results
FPGA ’24, March 3–5, 2024, Monterey, CA, USA Ayatallah Elakhras, Andrea Guerrieri, Lana Josipović, & Paolo Ienne

Table 1: Dataflow circuits tolerating out-of-order execution by our technique, contrasted to those produced by the fast token delivery [18]
circuit generation methodology of the open-source tool Dynamatic [29] that do not tolerate out-of-order execution. We measure cycle counts in
simulation and obtain the timing and resources from Vivado, after place-and-route. We report the number of tags 𝑁 used for each benchmark.

Benchmark 𝑁 Cycle count CP (ns) Execution time (𝝁s) LUTs FFs DSPs
[18] Ours [18] Ours [18] Ours [18] Ours [18] Ours

img-avg 4 1,722 634 6.42 8.21 11.05 5.21 2.1x 1,415 1,593 +13% 1,320 1,206 -9% 5
gsum_many 10 68,523 32,874 7.91 9.95 541.81 327.0 1.7x 2,835 3,657 +29% 3,256 3,725 +14% 22
gsum_single 10 6,703 9,333 6.90 9.01 46.25 84.11 0.55x 2,736 2,677 -2% 3,142 3,114 -1% 22
gemm 20 68,825 8,144 6.75 12.81 464.78 104.30 4.5x 3,214 5,937 +85% 2,693 3,688 +37% 11
matvec 50 7,936 918 6.41 13.51 50.86 12.40 4.1x 1,272 4,396 +246% 1,373 3,423 +149% 5
mvt 10 7,940 2,044 6.27 11.70 49.79 23.92 2.1x 2,886 5,544 +92% 2,701 3,730 +38% 10
bicg 10 7,936 1,000 6.43 11.27 51.06 11.27 4.5x 2,051 3,229 +57% 2,182 2,737 +25% 10

Loop Nests with High II for the Inner loop. Most of our
benchmarks come from the PolyBench suite [39] (bicg, mvt, gemm).
Besides, one benchmark is a floating-point matrix-vector multipli-
cation (matvec). They are all composed of loop nests with different
properties, but they have a few commonalities: (i) the inner loop has
long-latency loop-carried dependencies due to floating-point opera-
tions that limit the loop’s II, and (ii) the outer loop has independent
iterations; thus, iterations can go out of order. These properties
make them ideal candidates for our technique, so they have consid-
erable improvements in the execution time. The matvec benchmark
required a large value (50) of 𝑁 to achieve a 4.1x improvement in
the execution time; as a result, it witnessed the largest increase in
area due to the numerous buffer slots and large ALIGNERs needed
to accommodate this large 𝑁 .

Mutually Exclusive Paths with Different Latency. One of
our benchmarks gsum [7] is a loop that conditionally computes
floating-point polynomial expressions that incur unpredictable
long-latency loop-carried dependencies. We evaluate it in two ways:
(1) gsum_single is the original kernel [7] that has a loop-carried
dependency over a conditional long-latency operation in its outer
loop; thus, is forced to follow the program order and does not ben-
efit from any disorder. Interestingly, our technique resulted in even
worse clock cycles than the baseline since the TAGGER synchro-
nizes initially independent paths early in the execution, slowing
the fastest of them down. (2) gsum_many is multiple independent
invocations of the original kernel manifesting task-level parallel,
since there is a number of independent gsum_single kernels to ex-
ecute. They are parallelized by our technique; thus, the cycle count
and execution time are improved, but by a moderate factor since
the conditional long-latency operation is executed only in 10% of
the iterations. The img-avg benchmark is a simplified implementa-
tion of an image-averaging filter that does conditional averaging to
individual pixels. We gain by the out-of-order processing of pixels.

Table 1 summarizes the results and Figure 18 compares execution
times. We report the number of tags 𝑁 used for each benchmark
after exploring different values of 𝑁 . In summary, we significantly
gain in the execution time becausewe largely improve the II of loops,
as mentioned above. However, this comes at an increased resource
cost and a worsened critical path for two main reasons: (1) the
structures of the TAGGER and ALIGNER that have synchronization
mechanisms and matching capabilities, (2) the extra buffer slots
added to accommodate the 𝑁 tokens circulating in the circuit in
place of slots for a single token.

10 RELATEDWORK
Several HLS approaches generate synchronous [16, 27] and asyn-
chronous [2, 37, 41] dataflow circuits and aim to increase their exe-
cution parallelism by circuit buffering for high throughput [32, 40],
building memory interfaces for irregular parallelism [4, 19, 26], ad-
vancing computations via speculation [28], and increasing spatial
parallelism between independent circuit constructs [8, 18]. While
they increase parallelism between different operations, they strictly
keep successive executions of the same operation in program order.
We remove this constraint and, thus, attain a new dimension in
terms of parallelism.

Previous research addressed particular forms of out-of-order
execution of the same operation: Some authors [9, 10, 23, 34] employ
loop-specific mechanisms to execute inner loops of a loop nest in
parallel and reorder at the loop exit. Others [6, 24] support out-of-
order memory interfaces by tagging tokens prior to issuing them
to memory. We here generalize the problem beyond a particular
use case; our approach handles both of these situations and others,
such as the ones illustrated in Section 2.3. We do not claim any
qualitative advantage over prior work on their specific individual
supported cases.

Dataflow machines [1, 5, 14, 22, 38, 43] issue all tokens out of
order with tags appropriately aligned using a generic, processor-
like I-structure. Our spatial circuits do not have any centralized
structure; instead, we insert dedicated units into targeted positions
of our distributed circuit network to handle out-of-order execution.
Our ability to customize the insertion of this logic to the require-
ments of a particular application enables us to tag tokens only when
needed and achieve the desired parallelism levels with acceptable
resource overhead.

11 CONCLUSION
Untagged dataflow circuits, as produced by some HLS tools, trig-
ger successive execution of an operation in program order. This
places them at a disadvantage compared to modern processors that
freely reorder all independent operations. In important practical
situations, following program order limits the performance of these
circuits. We have developed a technique to enable out-of-order
execution by locally transforming untagged circuits into tagged
ones. We have applied this to a set of computational kernels and
demonstrated significant speedups at a relatively modest cost. We
believe this gives a new dimension to dataflow circuits and tangibly
increases their potential to excel in computing applications.

53

Table 1. Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovic, and Paolo Ienne. “Survival of the Fastest: Enabling More Out-of-Order Execution in
Dataflow Circuits”. In: Proceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA ’24. Monterey, CA, USA:
Association for Computing Machinery, 2024, pp. 44–54. isbn: 9798400704185. doi: 10.1145/3626202.3637556

8

https://doi.org/10.1145/3626202.3637556

Conclusion and future (current) work

Conclusion

We verify a rewrite framework for dataflow circuits in Lean 4.
We implement one main rewrite to introduce out-of-order execution.

Future work

Still a work in progress, finish proofs and gather proper results.
Develop better proof methods for verifying rewrites.
Hopeful we can extend the framework to other dataflow graphs (circuits?).

9

Thanks! Any questions?

Out-of-order in dataflow circuits

We can generalise the arbiter idea by
defining and out-of-order GCD
component.
A more general tagger/untagger pair
keeps track of the correct order of
tokens.

Systematic approach developed by
the Dynamatic lab.

GCD_OOO

< N− 1ld1 ld2

st Branch

Mux init

+1

Tagger

Untagger

Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovic, and Paolo Ienne. “Survival of the Fastest: Enabling More Out-of-Order Execution in Dataflow
Circuits”. In: Proceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA ’24. Monterey, CA, USA: Association
for Computing Machinery, 2024, pp. 44–54. isbn: 9798400704185. doi: 10.1145/3626202.3637556

Survival of the Fastest:

Enabling More Out-of-Order Execution in Dataflow Circuits

Ayatallah ElakhrasEPFLLausanne, Switzerland
Andrea Guerrieri

EPFL, HES-SO Valais-Wallis

Lausanne, Switzerland Lana JosipovićETH Zurich
Zurich, Switzerland Paolo IenneEPFLLausanne, Switzerland

ABSTRACTDynamically scheduled HLS, through dataflow circuit generation,

has proven successful at exploiting operation-level parallelism in

several important situations where statically scheduled HLS fails.

Yet, although existing dataflow circuits support out-of-order exe-

cution of different operations, they strictly confine successive in-

stances of the same operation to execute sequentially in program

order, which drastically affects the circuit’s performance in the

presence of a long-latency operation. This is in stark contrast with

the reordering freedom customary in superscalar processors that

naturally exploit qualitatively more parallelism in a broad class of

applications. The goal of this work is to produce dataflow circuits

that have reordering capabilities closer to those of out-of-order

superscalar processors. This can bring dramatic improvements in

some practically important cases, including when outer iterations

in nested loops are independent and the inner loop execution has

an unavoidable large initiation interval. In various cases, our tech-

nique increases throughput by a factor dependent on the initiation

interval of the kernel, at a comparatively modest area cost.

CCS CONCEPTS
• Computer systems organization→ Data flow architectures.

KEYWORDShigh-level synthesis, dataflow, out-of-order execution

ACM Reference Format:

Ayatallah Elakhras, Andrea Guerrieri, Lana Josipović, and Paolo Ienne. 2024.

Survival of the Fastest: Enabling More Out-of-Order Execution in Dataflow

Circuits. In Proceedings of the 2024 ACM/SIGDA International Symposium on

Field Programmable Gate Arrays (FPGA ’24), March 3–5, 2024, Monterey, CA,

USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3626202.

3637556

1 INTRODUCTION

Reconfigurable computing, predominantly realized through FPGAs,

represents a form of spatial computing that holds the potential to

deliver much-needed performance and energy advantages while

the computing industry grapples with the challenges of technology

scaling. A typical practical requirement is to compile optimized

production code, often developed in C/C++, into efficient circuits—a

This work is licensed under a Creative Commons Attribution

International 4.0 License.

FPGA ’24, March 3–5, 2024, Monterey, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0418-5/24/03

https://doi.org/10.1145/3626202.3637556

task usually referred to as high-level synthesis (HLS). The true diffi-

culty in this process lies in creating circuits that harness operation-

level parallelism beyond the levels achieved by traditional CPUs,

as parallelism is a pivotal factor in achieving high performance.

CPUs have achieved an impressive level of sophistication in exploit-

ing instruction-level parallelism through superscalar out-of-order

execution. Competing with them is a formidable endeavour.

1.1 Dynamically Scheduled HLS

Traditional HLS [11, 12], since the nineties, has mostly focused

on statically scheduled circuits, typically composed of datapaths

and finite-state machines controlling the periodic activation of the

datapath components. Broadly, they exploit operation parallelism

similar to very long instruction word (VLIW) processors. Alas, for

programswith irregular control flow andmemory accesses, they are

not very effective. Therefore, more recently, various authors studied

the production of dynamically scheduled circuits by reviving the

idea of dataflow circuits—that is, circuits without central controllers

and where operators are connected through handshake signals and

are activated by the availability of new operands.

Arguably, dataflow circuits are the “superscalars” of HLS [2, 30],

but this only is partially true: Although they allow for the dynamic

reordering of different operations, depending on operator availabil-

ity and like out-of-order superscalar processors, their construction

forces execution instances of an operation (e.g., in a loop kernel)

to follow strictly program order, which significantly limits their

performance. For instance, common dataflow circuits cannot use

nonblocking caches [20], which can return later cache hits before

earlier misses, whereas all modern processors do.

Our goal is to produce dataflow circuits that have reordering

capabilities closer to those of out-of-order superscalar processors

Figure 1: A Simple Dataflow Circuit. Edges between components

represent communication channels with handshake signals. The left

part of the circuit computes the iterator i and the right part con-

sumes it to perform the accumulation. Real circuits typically employ

MUXes instead of MERGEs, for reasons explained in Section 2.2.

44

FPGA’24

2

Rewrites are a nice way to perform optimisations in a verified framework

Do
tg
ra
ph

ExprHigh ExprLow

matcher rewrite

ExprHigh ExprLow

Subgraph

Graphiti

Verified in Lean 4Unverified

Started collaborating on
a verified dataflow
rewrite framework.
Use the rewrite
framework to implement
the FPGA’24 algorithm.

3

In particular we only need one general rewrite replicate many of the FPGA’24
results

Given a sequential loop over an
arbitrary loop body M.
We can generate an out-of-order
version of the loop by overlapping
loop executions.
Does this hold for an arbitrary
module M?
No, we need:

1-in-1-out behaviour for the
module.
It needs to be stateless.

Mux

Pure f

Split

Branch

Fork

In
it

i

o

Merge

Pure ↑f

Split

Branch

Tagger

Untagger

i

o
5

Hypothetical results
FPGA ’24, March 3–5, 2024, Monterey, CA, USA Ayatallah Elakhras, Andrea Guerrieri, Lana Josipović, & Paolo Ienne

Table 1: Dataflow circuits tolerating out-of-order execution by our technique, contrasted to those produced by the fast token delivery [18]
circuit generation methodology of the open-source tool Dynamatic [29] that do not tolerate out-of-order execution. We measure cycle counts in
simulation and obtain the timing and resources from Vivado, after place-and-route. We report the number of tags 𝑁 used for each benchmark.

Benchmark 𝑁 Cycle count CP (ns) Execution time (𝝁s) LUTs FFs DSPs
[18] Ours [18] Ours [18] Ours [18] Ours [18] Ours

img-avg 4 1,722 634 6.42 8.21 11.05 5.21 2.1x 1,415 1,593 +13% 1,320 1,206 -9% 5
gsum_many 10 68,523 32,874 7.91 9.95 541.81 327.0 1.7x 2,835 3,657 +29% 3,256 3,725 +14% 22
gsum_single 10 6,703 9,333 6.90 9.01 46.25 84.11 0.55x 2,736 2,677 -2% 3,142 3,114 -1% 22
gemm 20 68,825 8,144 6.75 12.81 464.78 104.30 4.5x 3,214 5,937 +85% 2,693 3,688 +37% 11
matvec 50 7,936 918 6.41 13.51 50.86 12.40 4.1x 1,272 4,396 +246% 1,373 3,423 +149% 5
mvt 10 7,940 2,044 6.27 11.70 49.79 23.92 2.1x 2,886 5,544 +92% 2,701 3,730 +38% 10
bicg 10 7,936 1,000 6.43 11.27 51.06 11.27 4.5x 2,051 3,229 +57% 2,182 2,737 +25% 10

Loop Nests with High II for the Inner loop. Most of our
benchmarks come from the PolyBench suite [39] (bicg, mvt, gemm).
Besides, one benchmark is a floating-point matrix-vector multipli-
cation (matvec). They are all composed of loop nests with different
properties, but they have a few commonalities: (i) the inner loop has
long-latency loop-carried dependencies due to floating-point opera-
tions that limit the loop’s II, and (ii) the outer loop has independent
iterations; thus, iterations can go out of order. These properties
make them ideal candidates for our technique, so they have consid-
erable improvements in the execution time. The matvec benchmark
required a large value (50) of 𝑁 to achieve a 4.1x improvement in
the execution time; as a result, it witnessed the largest increase in
area due to the numerous buffer slots and large ALIGNERs needed
to accommodate this large 𝑁 .

Mutually Exclusive Paths with Different Latency. One of
our benchmarks gsum [7] is a loop that conditionally computes
floating-point polynomial expressions that incur unpredictable
long-latency loop-carried dependencies. We evaluate it in two ways:
(1) gsum_single is the original kernel [7] that has a loop-carried
dependency over a conditional long-latency operation in its outer
loop; thus, is forced to follow the program order and does not ben-
efit from any disorder. Interestingly, our technique resulted in even
worse clock cycles than the baseline since the TAGGER synchro-
nizes initially independent paths early in the execution, slowing
the fastest of them down. (2) gsum_many is multiple independent
invocations of the original kernel manifesting task-level parallel,
since there is a number of independent gsum_single kernels to ex-
ecute. They are parallelized by our technique; thus, the cycle count
and execution time are improved, but by a moderate factor since
the conditional long-latency operation is executed only in 10% of
the iterations. The img-avg benchmark is a simplified implementa-
tion of an image-averaging filter that does conditional averaging to
individual pixels. We gain by the out-of-order processing of pixels.

Table 1 summarizes the results and Figure 18 compares execution
times. We report the number of tags 𝑁 used for each benchmark
after exploring different values of 𝑁 . In summary, we significantly
gain in the execution time becausewe largely improve the II of loops,
as mentioned above. However, this comes at an increased resource
cost and a worsened critical path for two main reasons: (1) the
structures of the TAGGER and ALIGNER that have synchronization
mechanisms and matching capabilities, (2) the extra buffer slots
added to accommodate the 𝑁 tokens circulating in the circuit in
place of slots for a single token.

10 RELATEDWORK
Several HLS approaches generate synchronous [16, 27] and asyn-
chronous [2, 37, 41] dataflow circuits and aim to increase their exe-
cution parallelism by circuit buffering for high throughput [32, 40],
building memory interfaces for irregular parallelism [4, 19, 26], ad-
vancing computations via speculation [28], and increasing spatial
parallelism between independent circuit constructs [8, 18]. While
they increase parallelism between different operations, they strictly
keep successive executions of the same operation in program order.
We remove this constraint and, thus, attain a new dimension in
terms of parallelism.

Previous research addressed particular forms of out-of-order
execution of the same operation: Some authors [9, 10, 23, 34] employ
loop-specific mechanisms to execute inner loops of a loop nest in
parallel and reorder at the loop exit. Others [6, 24] support out-of-
order memory interfaces by tagging tokens prior to issuing them
to memory. We here generalize the problem beyond a particular
use case; our approach handles both of these situations and others,
such as the ones illustrated in Section 2.3. We do not claim any
qualitative advantage over prior work on their specific individual
supported cases.

Dataflow machines [1, 5, 14, 22, 38, 43] issue all tokens out of
order with tags appropriately aligned using a generic, processor-
like I-structure. Our spatial circuits do not have any centralized
structure; instead, we insert dedicated units into targeted positions
of our distributed circuit network to handle out-of-order execution.
Our ability to customize the insertion of this logic to the require-
ments of a particular application enables us to tag tokens only when
needed and achieve the desired parallelism levels with acceptable
resource overhead.

11 CONCLUSION
Untagged dataflow circuits, as produced by some HLS tools, trig-
ger successive execution of an operation in program order. This
places them at a disadvantage compared to modern processors that
freely reorder all independent operations. In important practical
situations, following program order limits the performance of these
circuits. We have developed a technique to enable out-of-order
execution by locally transforming untagged circuits into tagged
ones. We have applied this to a set of computational kernels and
demonstrated significant speedups at a relatively modest cost. We
believe this gives a new dimension to dataflow circuits and tangibly
increases their potential to excel in computing applications.

53

Table 1. Ayatallah Elakhras, Andrea Guerrieri, Lana Josipovic, and Paolo Ienne. “Survival of the Fastest: Enabling More Out-of-Order Execution in
Dataflow Circuits”. In: Proceedings of the 2024 ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA ’24. Monterey, CA, USA:
Association for Computing Machinery, 2024, pp. 44–54. isbn: 9798400704185. doi: 10.1145/3626202.3637556

8

9

References i

Elakhras, Ayatallah, Andrea Guerrieri, Lana Josipovic, and Paolo Ienne. “Survival of the Fastest:
Enabling More Out-of-Order Execution in Dataflow Circuits”. In: Proceedings of the 2024
ACM/SIGDA International Symposium on Field Programmable Gate Arrays. FPGA ’24. Monterey, CA,
USA: Association for Computing Machinery, 2024, pp. 44–54. isbn: 9798400704185. doi:
10.1145/3626202.3637556.

https://doi.org/10.1145/3626202.3637556

	Appendix

