
PhDThesis

Formal Verification
of High-Level Synthesis

Yann Herklotz Grave

13th February 2024

Supervised by
Dr John Wickerson

Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in
Electrical and Electronic Engineering of Imperial College London.

Supervisor: Dr John Wickerson
Internal Examiner: Prof George Constantinides
External Examiner: Prof Xavier Leroy

© Yann Herklotz Grave, 2024

The copyright of this thesis rests with the author. Unless
otherwise indicated, its contents are licensed under a Cre-
ative Commons Attribution-NonCommercial 4.0 Interna-
tional Licence (CC BY-NC).

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Statement of Originality

I, Yann Herklotz Grave, declare that the work presented in this thesis is my own, and that
any other work has been appropriately referenced.

3

Abstract

Latency, throughput, and energy efficiency are becoming increasingly important, leading
to custom hardware accelerators being designed for numerous applications instead of using
less efficient general processors. Alas, designing these accelerators can be a tedious and
error-prone process, especially when using hardware description languages (HDLs) such
as Verilog or VHDL, which operate at the register transfer level.

An attractive alternative is high-level synthesis (HLS), where hardware designs are
automatically compiled from software written in a high-level language like C. This way,
hardware designers can benefit from mature software development tools while working on
the functionality of the design. HLS tools promise designs with comparable performance
and energy-efficiency to those hand-written in an HDL, reducing the time needed to
design new accelerators. Being able to reason about behaviour at a higher level should
also make the process less error-prone. Unfortunately, HLS tools have been found to
be unreliable; Vivado HLS produces incorrect designs in 1.2% of randomly generated C
programs, undermining testing that was performed at the higher level of abstraction.

In an attempt to improve this situation, I propose a formally verified HLS tool called
Vericert, providing a computer-checked proof that ensures it only generates hardware
designs that behave the same as the input software program. Vericert extends CompCert,
an established formally verified C Compiler, with a hardware back end.

One expects a verified tool to produce significantly worse hardware than existing op-
timising HLS tools, as each transformation has to be simple enough to be proven correct.
Indeed, an initial version of Vericert without optimisations was up to 8× slower than a
state-of-the-art HLS tool called Bambu even with many optimisations switched off. How-
ever, by verifying hyperblock scheduling in Vericert, a transformation which parallelises
the instructions in large regions of code without loops, hardware produced by Vericert
becomes only around 1.6× slower than Bambu without optimisations and 3.6× slower than
hardware produced by optimised Bambu. This is encouraging, showing that a verified
HLS tool can be comparable with an existing HLS tool with some optimisations turned off,

5

Abstract

while being guaranteed to generate correct hardware designs.

6

Acknowledgements

First and foremost I would like to thank my supervisor John Wickerson for his continued
guidance and patience throughout the PhD. He has allowed me to explore freely, and was
generous with his time whenever I needed help or advice. He has also always encouraged
me to present my work in diverse venues, leading to many interesting discussions and
connections. His wonderful ability to understand technical descriptions and expose the
core contribution clearly and creatively has been invaluable, and has taught me how to
communicate my ideas clearly.

Next, I would like to thank my colleagues in the Circuits and Systems group for many
interesting discussions and creating an enjoyable atmosphere in the lab: Jianyi for a joint
journey through the PhD, Nadesh for introducing me to high-level synthesis and helping
me run them in the first place, Aditya and Diederik for many discussions about compilers
over drinks, my coauthors James Pollard, Zewei and Michalis for all their help on our
publications, and Kate, Roy, Divyansh and Mariano for being amazing flatmates. Finally, I
would like to thank Alex, Ben Biggs, Ben Chua, Dan, Erwei, Ian, James Davis, Quentin and
Sina for many insightful discussions and advice, as well as help working with FPGAs and
hardware tools.

I also gratefully acknowledge the Cyber Security Centre (NCSC) for funding this PhD
through the Research Institute on Verified Trustworthy Software Systems (VeTSS).

I have also had the great pleasure to be able to work in the Celtique group at Irisa in
Rennes as a visiting researcher over the summer in 2022. I would like to thank Sandrine
Blazy and Delphine Demange for their deep insights into the CompCert compiler and for
countless interesting discussions on different verification techniques and how these could
be integrated into CompCert.

I would also like to sincerely thank Sandro Stucki and Bor-Yuh Evan Chang for their
invaluable guidance during my internship at Amazon Prime Video, as well as my colleagues
during my time there with whom I had enlightening discussions with: Daniel, Francesco,
Franco, Horia, Ilina, Ioannis, Pauline, Philipp, Sarek, Stefan, and Vlad. Additionally, I would

7

Acknowledgements

like to thank Stefan Zetzsche for all his help understanding Dafny.
I would also like to thank my family and friends for their invaluable support and

understanding during the PhD.Thank you to my mother for her continued support, helping
me get through stressful times.

Finally, I would like to thank my partner and best friend Nikita for her continued support.

8

Contents

Copyright Assignment 2

Statement of Originality 3

Abstract 5

Acknowledgements 7

Abbreviations 17

1 Introduction 19
1.1 Research Contributions . 21
1.2 Dissertation Outline . 24
1.3 Publications . 24

2 Background 27
2.1 Field Programmable Gate Arrays . 27
2.2 An Introduction to Verilog . 29
2.3 High-Level Synthesis . 30

2.3.1 Data structures for intermediate languages 33
2.3.2 Grouping instructions into blocks 36

2.4 Scheduling . 38
2.4.1 Static scheduling . 39
2.4.2 Dynamic scheduling . 41

2.5 Verification . 41
2.5.1 Automatic theorem provers . 42
2.5.2 Interactive theorem provers . 43

2.6 Verification of High-Level Synthesis . 44
2.6.1 Unmechanised verification of HLS 45

9

Contents

2.6.2 Mechanised compiler proofs in high-level hardware design 49
2.6.3 HLS formalised in Isabelle . 51

2.7 CompCert . 51
2.7.1 CompCert correctness theorem . 54
2.7.2 Instruction scheduling in CompCert 57
2.7.3 Trace scheduling . 59

2.8 Summary . 62

3 Introduction to Vericert 63
3.1 Unreliability of High-Level Synthesis . 63
3.2 Main Design Decisions of Vericert . 65
3.3 Translating C to Verilog by Example . 69

3.3.1 Translating C to Rtl . 69
3.3.2 Scheduling Rtl instructions . 70
3.3.3 Translating RtlPar to Htl . 71
3.3.4 Translating Htl to Verilog . 74

4 Trusted Computing Base 77
4.1 Formulating the Correctness Theorem . 77
4.2 A Formal Semantics for Verilog . 79

4.2.1 Changes to the semantics . 81
4.2.2 Integrating the Verilog semantics into CompCert’s model 83
4.2.3 Memory model . 86
4.2.4 Deterministic Verilog semantics . 88

4.3 Summary . 88

5 Verified Hyperblock Scheduling 89
5.1 Overview . 90
5.2 New Intermediate Languages . 92
5.3 Verified If-Conversion . 95
5.4 Implementing Hyperblock Scheduling . 97
5.5 Validation of Hyperblock Scheduling . 100

5.5.1 First attempt: basic symbolic execution 100
5.5.2 Second attempt: using value summaries 101
5.5.3 Third attempt: using value summaries and final-state guards 103

10

Contents

5.5.4 Handling overwritten expressions 104
5.5.5 Formalising the symbolic state and symbolic execution 105
5.5.6 Defining a Verified Scheduler . 108

5.6 Proving the Validator Correct . 109
5.6.1 A semantics for symbolic states . 109
5.6.2 Establishing the chain of simulations 111
5.6.3 Managing complexity in the proof 113

5.7 Related Work . 114
5.8 Validated three-valued Logic Using an SMT Solver 115
5.9 Summary . 118

6 Hardware Generation 119
6.1 Hyperblock Destruction . 120

6.1.1 Proof of hyperblock destruction . 121
6.2 Htl Generation . 121

6.2.1 Htl structure and semantics . 121
6.2.2 Htl generation algorithm . 123
6.2.3 Htl generation correctness proof 127

6.3 BRAM insertion . 129
6.3.1 BRAM model semantics . 131
6.3.2 BRAM insertion and correctness proof 131

6.4 Register Forward Substitution . 136
6.4.1 Forward substitution correctness proof 139

6.5 Verilog Generation . 141
6.5.1 Forward simulation from Htl to Verilog 142

6.6 Summary . 142

7 Evaluation 145
7.1 Experimental Setup . 145
7.2 RQ1: Is Vericert Competitive With Unverified Tools 147
7.3 RQ2: Area and Delay Improvements of Vericert 147
7.4 RQ3: Hyperblock Scheduling Compared to Naïve Scheduling 149
7.5 RQ4: Compilation Times of Vericert . 149
7.6 RQ5: Effectiveness of Vericert’s Correctness Theorem 150
7.7 Summary . 151

11

Contents

8 Conclusion 153
8.1 Coq mechanisation . 153
8.2 Limitations and Future Work . 154

8.2.1 Limitations to the generated hardware 154
8.2.2 Limitations on the software input 156
8.2.3 The Future of Vericert . 157

8.3 Summary . 157

Bibliography 159

Index 175

12

List of Figures

2.1 FPGA layout showing a place and routed design. 28
2.2 A simple Verilog implementation of a finite-state machine. 29
2.3 Comparison of lists, control-flow graphs, data-flow graphs and control-

and data-flow graphs. 34
2.4 Comparison of basic blocks, superblocks and hyperblocks. 36
2.5 Summary of related work . 46
2.6 CompCert diagram describing the intermediate languages. 53
2.7 Examples of simulation diagrams that make up the backward simulation. . 56
2.8 Examples of forward simulation diagrams. 57
2.9 Example of symbolic execution adapted from Tristan and Leroy. 58
2.10 Comparison of the graph of trees structure and Btl. 59

3.1 Miscompilation bug in Xilinx Vivado HLS v2018.3, v2019.1 and v2019.2. . . 64
3.2 The number of failures per tool. 65
3.3 Vericert as a Verilog back end to CompCert. 67
3.4 Translating a simple program from C to Rtl. 70
3.5 Scheduling a simple program from RtlBlock to RtlPar. 71
3.6 Diagram of the FSMD for the example. 72
3.7 Verilog implementation of the Rtl code. 73

4.1 Top-level small-step semantics for Verilog modules in CompCert’s compu-
tational framework. 84

4.2 Change in the memory model during the translation of Rtl into Htl. . . . 87

5.1 New passes and intermediate languages introduced in this work. 90
5.2 Example of an if-conversion transformation followed by a scheduling op-

eration. 91
5.3 Syntax of RtlBlock and RtlPar, with our hyperblock additions highlighted. 93
5.4 Semantics of RtlBlock and RtlPar hyperblocks. 95

13

List of Figures

5.5 Details of the if-conversion pass, showing the three different stages of the
transformation. 95

5.6 An example showing two iterations of the block-inlining pass. 96
5.7 Example of scheduling a hyperblock. 99
5.8 An example schedule. 100
5.9 Syntax of symbolic states. 106
5.10 Symbolic execution of selected instructions 108
5.11 Semantics of symbolic states . 110
5.12 Validation of predicate expressions using three-valued logic. 115
5.13 Evaluation of three-valued logic predicates. 117

6.1 Hardware generation transformation passes introduced to convert RtlPar
to Verilog. 120

6.2 Hyperblock destruction transformation splitting up the hyperblock into
multiple locations. 121

6.3 Syntax of Htl. 122
6.4 Simple translation from an RtlSubPar block into an Htl block. 124
6.5 Describing the control flow translation from RtlSubPar to Htl. 126
6.6 Verilog implementation of the BRAM interface generated by Vericert. . . . 130
6.7 Timing diagrams showing the execution of loads and stores over multiple

clock cycles. 132
6.8 Specification for the memory implementation in Htl. 132
6.9 Memory transformation specification. 134
6.10 Simple example of the forward substitution transformation. 137
6.11 Simple forward substitution transformation with the runtime association

maps. 137
6.12 Instantiation of BRAM specification with Verilog implementation. 141

7.1 Results of simulating and synthesising the PolyBench/C benchmark suite
using a range of HLS tools. 148

7.2 Comparing the performance of predicate validators. 150
7.3 Results of fuzzing Vericert using 155267 random C programs generated by

Csmith. 150

14

List of Tables

5.1 First attempt: basic symbolic execution . 101
5.2 Second attempt: using value summaries. 102
5.3 Third attempt: using value summaries and final values in guards. 104

8.1 Statistics about the numbers of lines of code in the proof and implementa-
tion of Vericert, counted using coqwc. 154

15

Abbreviations

ALAP as late as possible

ASAP as soon as possible

ASIC application-specific integrated circuit

Asm CompCert assembly language

AsmBlock CompCert KVX assembly block language

AST abstract syntax tree

BRAM block random-access memory

Btl block transfer language

C#minor CompCert intermediate language

CDFG control- and data-flow graph

CFG control-flow graph

Clight CompCert intermediate language

Cminor CompCert intermediate language

CminorSel CompCert intermediate language

CPU central processing unit

DFG data-flow graph

DRAM dynamic random-access memory

DSL domain-specific language

17

Abbreviations

DSP digital signal processor

FPGA field-programmable gate array

FSM finite-state machine

FSMD finite-state machine with data path

GPU graphics processing unit

HDL hardware description language

HLS high-level synthesis

IP core intellectual property core

IR intermediate representation

LP linear programming

LSQ load-store queue

Ltl linear transfer language

LUT look-up table

Mach CompCert intermediate language

Rtl register transfer language

SAT satisfiability

SDC system of difference constraints

SMT satisfiability modulo theories

SSA static single assignment

VLIW very large instruction word

18

Introduction1
As latency, throughput, and energy efficiency are becoming increasingly important, we
are seeing companies move towards designing their own application-specific hardware
accelerators tailored to their workloads instead of relying on general-purpose central
processing units (CPUs) or graphics processing units (GPUs). By specialising the hardware
to the application, the hardware can be optimised further than general purpose processors,
unlocking better performance while often using less power. Apple and Google, for example,
are integrating machine learning accelerators into consumer hardware to allow models to
run more efficiently than if they used the CPU or GPU [Apple 2022; Gupta 2023]. Machine
learning is an example of an application that benefits greatly from having dedicated and
specialised hardware accelerators designed for it [Reuther et al. 2020].

Alas, designing these accelerators can be a tedious and error-prone process. Hardware is
normally designed using a hardware description language (HDL) such as Verilog or VHDL,
which operates at the register-transfer level where the hardware needs to be described
manually. As the complexity of hardware designs increases, designing hardware at this
level becomes increasingly difficult, because the low-level description of the hardware
makes it time-consuming and expensive to thoroughly test to ensure that it behaves as
expected. An attractive alternative is high-level synthesis (HLS), where hardware designs
are automatically compiled from software written in a high-level language like C. This
way, hardware design can benefit from mature software development tools while working
on the general functionality of the hardware, and then use a modern HLS tools such
as LegUp [Andrew Canis et al. 2013], Vitis HLS [AMD 2023b], Intel i++ [Intel 2020a],
Stratus HLS [Roane 2023] or Bambu HLS [Pilato and Ferrandi 2013] to produce the register-
transfer level description. These HLS tools promise designs with comparable performance
and energy-efficiency to those hand-written in an HDL [Gauthier and Wadood 2020;
Homsirikamol and Gaj 2014; Pelcat et al. 2016]. This reduces the time needed to design
new hardware accelerators and as the design is performed at a higher level, the process
should also be less error-prone.

19

1 Introduction

Verifying the functionality of HLS designs Compared to software, it is even more
important to ensure that hardware functions as it is supposed to, because once the hard-
ware has been taped-out into an application-specific integrated circuit (ASIC), it becomes
impossible to properly fix the issue except through workarounds in software. This may
come at a great cost in terms of energy usage and the performance of the system compared
to fixing the issue in hardware itself [Bowen and Lupo 2020; Herzog et al. 2021]. These
hardware faults can also often be exploited and can be hard to detect, even using state-
of-the-art hardware verification methodologies [Dessouky et al. 2019], either because the
correctness properties themselves can be hard to express, or because the state-space that
needs to be explored by the tools is too large.

HLS should simplify the process of verifying the functionality of the hardware design.
Verifying designs at the register-transfer level requires large engineering efforts because
of the level of detail and the size of the design. Even testing such large designs can be
problematic, because the size of the design often means one cannot simulate running
the hardware for more than a few seconds. Instead, HLS moves the verification of the
functionality of the design to a higher level, where less detail is exposed, making it possible
for software tools to reason about the behaviour of the program instead. Although a recent
survey by Lahti et al. [2019] describes that verification remains a time-consuming part of
the design process even with the use of HLS, it finds that in general it still reduced the
verification effort by half.

Unfortunately, there are reasons to doubt that HLS tools actually preserve the behaviour
of the design, increasing the chance of there being exploitable hardware faults in the
resulting accelerator, and making verification at the level of the high-level language less
useful. Some of these reasons are general: HLS tools are large pieces of software, they
perform a series of complex analyses and transformations, and the HDL output they
produce has superficial syntactic similarities to a software language but a subtly different
semantics. Other reasons are more specific: for instance, Vivado HLS has been shown
to apply pipelining optimisations incorrectly1 or to silently generate wrong code should
the programmer stray outside the fragment of C that it supports.2,3 Meanwhile, Lidbury
et al. [2015] had to abandon their attempt to fuzz-test Altera’s (now Intel’s) OpenCL to
hardware compiler since it ‘either crashed or emitted an internal compiler error’ on many

1https://support.xilinx.com/s/question/0D52E00006jt7LfSAI/crtl-cosimulation-failed-caused-by-

pragma-hls-pipeline
2https://support.xilinx.com/s/question/0D52E00006hpMZSSA2/pointer-synthesis-in-vivado-hls-v201
3https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Pointer-Limitations

20

https://support.xilinx.com/s/question/0D52E00006jt7LfSAI/crtl-cosimulation-failed-caused-by-pragma-hls-pipeline
https://support.xilinx.com/s/question/0D52E00006jt7LfSAI/crtl-cosimulation-failed-caused-by-pragma-hls-pipeline
https://support.xilinx.com/s/question/0D52E00006hpMZSSA2/pointer-synthesis-in-vivado-hls-v201
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Pointer-Limitations

1.1 Research Contributions

of their test inputs. More recently, Herklotz, Du et al. [2021] fuzz-tested three commercial
HLS tools using Csmith [Yang et al. 2011], and despite restricting the generated programs
to the C fragment explicitly supported by all the tools, they still found that on average 2.5%
of test-cases were compiled to designs that behaved incorrectly.

Existing workarounds Aware of the reliability shortcomings of HLS tools, hardware
designers routinely check the generated hardware for functional correctness. This is
commonly done by simulating the generated design against a large test-bench. But unless
the test-bench covers all inputs exhaustively – which is often infeasible – there is a risk
that bugs remain.

One alternative is to use translation validation [Pnueli et al. 1998] to prove equivalence
between the input program and the output design. Translation validation has been suc-
cessfully applied to several HLS optimisations [Banerjee et al. 2014; Chouksey and Karfa
2020; Chouksey et al. 2019; Karfa et al. 2006; Youngsik Kim et al. 2004]. Nevertheless, it
is an expensive task, especially for large designs, and it must be repeated every time the
compiler is invoked. For example, the translation validation for Catapult C [Siemens 2021]
may require several rounds of expert ‘adjustments’ [Chauhan 2020, p. 3] to the input C
program before validation succeeds. And even when it succeeds, translation validation
does not provide watertight guarantees unless the validator itself has been mechanically
proven correct [e.g. Tristan and Leroy 2008], which has not been the case in HLS tools to
date.

My position is that none of the above workarounds are necessary if the HLS tool
can simply be trusted to work correctly. This dissertation explores the implementation
of a mechanically verified and optimising HLS tool built on the CompCert verified C
compiler [Leroy 2006, 2009b; Leroy et al. 2016]. The main thesis of this dissertation is
therefore the following:

Thesis A realistic and optimising high-level synthesis tool can be proven
correct using an interactive theorem prover, guaranteeing the correctness of
the hardware while also remaining practical and efficient.

1.1 Research Contributions

The main contributions of this dissertation is Vericert, a formally verified and optimising
HLS tool. Vericert is written in the Coq theorem prover and comes with a machine-checked

21

1 Introduction

proof that any output design it produces always has the same behaviour as the input
C program. Vericert is automatically extracted to an OCaml program from Coq, which
ensures that the object of the proof is the same as the implementation of the tool. Vericert
is built by extending the CompCert verified C compiler with a new hardware-specific
intermediate language and a Verilog back end. It supports many C constructs, including
integer operations, function calls (which are all inlined), local arrays, structs, unions,
and general control-flow statements, but currently excludes support for case statements,
function pointers, recursive function calls, non-32-bit integers, floats, and global variables.
The main research contributions of Vericert are the following:

Formulate overall correctness theorem with Verilog semantics First, I state the cor-
rectness theorem of Vericert with respect to an existing semantics for Verilog due to
Lööw and Myreen [2019]. The key challenge here involved integrating the hardware
semantics within CompCert’s model of computation and calling convention. This
required specifying the external module interface used to interact with the final
hardware produced by Vericert, for example specifying how the hardware can be
reset, and how the final return value is extracted. Another challenge was extending
the Verilog semantics with support for arrays, which is necessary to model hard-
ware memory interfaces. Lastly, one particular difficulty that had to be overcome is
proving that the function stack could be modelled by this finite Verilog array.

First mechanisation of general if-conversion CompCert does already perform lim-
ited if-conversion, removing branches that contain a single instruction and replacing
them with a conditional move instruction, because predicated instructions are un-
supported. I describe the formalisation of a general if-conversion transformation in
CompCert used to generate hyperblocks, which are sequences of possibly branching
predicated instructions, where the only incoming edges are to the start of the block.
The key challenge was to generalise the if-conversion pass so that any external un-
verified heuristic could be used to inline blocks, while keeping the correctness proof
conceptually simple. It is also flexible enough to allow for light loop transformations
like loop unrolling and loop peeling.

Formal verification of hyperblock scheduling Next, I present a verified implement-
ation of hyperblock scheduling, a critical optimisation for any HLS tool, taking
advantage of the parallel nature of the hardware that is generated. I implement and
validate the system of difference constraints (SDC) scheduling algorithm [Cong and

22

1.1 Research Contributions

Zhang 2006], which is the base of the scheduling algorithm used by most HLS tools.
Prior work verifying scheduling algorithms in CompCert [Six et al. 2022; Tristan and
Leroy 2008] either were not general enough, being unable to schedule two branches
of an if-statement together, or were inefficient because of unnecessary duplication
when checking the correctness of the schedule. Instead, the key insight for this
contribution is that predicates can be used to share otherwise duplicate expressions
along different paths through the program.

SAT and SMT solvers for translation validation in CompCert I also present a novel
use of a satisfiability (SAT) solver and a three-valued logic solver, implemented using
an satisfiability modulo theories (SMT) solver, during translation validation to reason
about the equivalence of functions before and after the scheduling transformations.
The key challenge here is integrating an existing SMT proof checker, meant for
assisting with interactive Coq proofs, and using it as a checker that can be used by
the compiler at runtime to check that, for example, a three-valued predicate always
holds. This can be used as a general validator for any transformation pass where the
correctness depends on dynamically generated properties expressible in three-valued
logic that need to be checked.

Evaluation of Vericert on PolyBench/C Finally, I evaluate different versions of Veri-
cert against the state-of-the-art open source and unverified HLS tool Bambu HLS [Pi-
lato and Ferrandi 2013] on a standard C benchmark suite called PolyBench/C. One
might expect a fully verified tool to perform significantly worse than a more optim-
ised, unverified tool, however, we show that Vericert produces designs that have
around the same cycle count as Bambu without optimisations, with a slightly worse
maximum clock speed, leading to an overall execution speed of around 1.6× that of
Bambu designs. However, when comparing against optimised Bambu, Vericert is
3.6× slower, which can be explained by the extensive loop optimisations present in
Bambu.

Companion material Vericert is fully open source and available on GitHub at:

https://github.com/ymherklotz/vericert

A snapshot of the Vericert development is also available in a Zenodo repository [Herklotz
et al. 2024].

23

https://github.com/ymherklotz/vericert

1 Introduction

1.2 Dissertation Outline

This dissertation is organised into the following chapters.

Chapter 2 provides background for the rest of the dissertation and also discusses related
work around verification of high-level synthesis.

Chapter 3 introduces Vericert itself, giving an overview of how it is structured, as well
as what kind of transformations are performed. Design choices made during the
development of Vericert are also described and compared against other possible
approaches.

Chapter 4 then gives a summary of the trusted computing base in Vericert, describing
the Verilog semantics and the final correctness theorem.

Chapter 5 then describes the front end of Vericert, which hooks into the middle end of
CompCert. This chapter describes the implementation of hyperblock scheduling.

Chapter 6 then describes how the hyperblocks optimised by the scheduling algorithm
are then turned into a hardware design in Verilog.

Chapter 7 evaluates different versions of Vericert in a number of ways on certain metrics
comparing it against Bambu.

Chapter 8 finally gives a description of the limitations of Vericert as well as a discussion of
the formalisation. In addition to that, many possible future directions are discussed.

1.3 Publications

The research in this dissertation has also been presented in the following three publications.

FCCM 2021 This first paper evaluates the reliability of HLS tools and motivates the need
for a more reliable HLS tool, as well as a more robust verification flow for HLS
designs. This paper is described in section 3.1.

Yann Herklotz, Zewei Du, Nadesh Ramanathan and John Wickerson. 2021. ‘An
Empirical Study of the Reliability of High-Level Synthesis Tools’. In: 2021 IEEE 29th
Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), 219–223. doi: 10.1109/FCCM51124.2021.00034.

24

https://doi.org/10.1109/FCCM51124.2021.00034

1.3 Publications

OOPSLA 2021 Next, we introduce Vericert and describe an initial translation from C
to Verilog using CompCert, without optimisations. This article is the basis for the
dissertation, making up parts of chapters 3, 4 and 6.

Yann Herklotz, James D. Pollard, Nadesh Ramanathan and John Wickerson. Oct.
2021. ‘Formal Verification of High-Level Synthesis’. Proceedings of the ACM on
Programming Languages, 5, OOPSLA, (Oct. 2021). doi: 10.1145/3485494.

PLDI 2024 (under submission) Finally, an article describing a critical optimisation in
the HLS flow called hyperblock scheduling is under submission. This preprint
underpins chapter 5.

Yann Herklotz and John Wickerson. 2024. ‘Hyperblock Scheduling for Verified
High-Level Synthesis’. Submitted to PLDI 2024. (2024). https://yannherklotz.com
/docs/drafts/verified_hyperblock_scheduling.pdf .

The following publications did not directly contribute to the dissertation.

FPGA 2020 This paper describes bugs that were found in hardware synthesis tools by
generating random, deterministic hardware designs.

Yann Herklotz and John Wickerson. 2020. ‘Finding and Understanding Bugs in
FPGA Synthesis Tools’. In: ACM/SIGDA Int. Symp. on Field-Programmable Gate
Arrays. Seaside, CA, USA. isbn: 978-1-4503-7099-8. doi: 10.1145/3373087.3375310.

FCCM 2022 This short paper describes an implementation of function calls in Vericert
allowing function bodies to be shared between calls.

Michalis Pardalos, Yann Herklotz and John Wickerson. 2022. ‘Resource Sharing for
Verified High-Level Synthesis’. In: 2022 IEEE 30th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 1–6. doi: 10.1109

/FCCM53951.2022.9786208.

CPP 2023 Finally, this paper described an implementation of a control-flow based se-
mantics for gated-SSA in CompCertSSA, a first step towards a pure data-flow inter-
mediate language in CompCert.

Yann Herklotz, Delphine Demange and Sandrine Blazy. 2023. ‘Mechanised Se-
mantics for Gated Static Single Assignment’. In: Proceedings of the 12th ACMSIGPLAN
International Conference on Certified Programs and Proofs (CPP 2023). Association

25

https://doi.org/10.1145/3485494
https://yannherklotz.com/docs/drafts/verified_hyperblock_scheduling.pdf
https://yannherklotz.com/docs/drafts/verified_hyperblock_scheduling.pdf
https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1109/FCCM53951.2022.9786208
https://doi.org/10.1109/FCCM53951.2022.9786208

1 Introduction

for Computing Machinery, Boston, MA, USA, 182–196. isbn: 9798400700262. doi:
10.1145/3573105.3575681.

26

https://doi.org/10.1145/3573105.3575681

Background2
This chapter briefly describes field-programmable gate arrays (FPGAs) followed
by introducing high-level synthesis (HLS) and the current state-of-the-art op-
timisations used by HLS tools, focusing in particular on static scheduling. Next,
common testing and verification workflows for HLS are also described. Finally,
an overview of CompCert is given, on which Vericert is built.

2.1 Field Programmable Gate Arrays

This section introduces field-programmable gate arrays (FPGAs), which is assumed to be
the final target for the hardware produced by Vericert, as well as the HLS tools that Vericert
is directly compared against.

FPGAs are programmable hardware chips that can be used to implement and run custom
hardware without having to tape-out an ASIC, which may take years of development time.
FPGAs instead provide a platform to test custom hardware quickly without these long
turnaround times, and can be reprogrammed at will in case the hardware ever needs to
change. Because they still allow for reprogrammability, they can never be as efficient as an
equivalent ASIC design, however, for many applications having the chance to reprogram
the hardware is an advantage. In addition to that, an FPGA will still generally be more
efficient and more performant than running the same workload on a general-purpose
processor. FPGAs comprise the following four main components [Boutros and Betz 2021],
which are also shown in figure 2.1.

Look-up table (LUT) A LUT can implement any kind of logic with a set number of inputs
and an output. On an FPGA, LUTs are often grouped into larger programmable
logic units called slices that can handle multiple inputs and outputs. LUTs are also
normally paired with an optional register at the output so that they can also be used
as a memory.

27

2 Background

LUT

SW

LUT

SW

LUT

SW

LUT

LUT

SW

LUT

SW

LUT

SW

LUT

LUT

SW

LUT

SW

LUT

SW

LUT

LUT

LUT

LUT

LUT

DSP

BRAM

DSP

BRAM

Figure 2.1: FPGA layout, showing an example of a design that is placed and routed on
the FPGA highlighted in red. The beige blocks correspond to LUTs, followed by green
blocks being DSPs and purple blocks being BRAMs. The programmable interconnects
are made up of connection blocks and switches shown in pink and blue respectively.

Programmable interconnect The LUTs are connected using programmable intercon-
nects, so that these arbitrary logical units can also be connected in arbitrary ways,
making it possible to implement any kind of hardware design.

Block random-access memory (BRAM) Instead of relying on implementing memories
to store a large amount of data using LUTs, there is often BRAM on the FPGA, which
provides efficient storage for data.

Digital signal processor (DSP) Finally, FPGAs also often contain DSPs, which can be
used to implement common arithmetic functions efficiently, that may otherwise take
up a lot of space if implemented using LUTs. Some common arithmetic functions
that are often implemented using DSPs include integer multipliers and multiply-
accumulate operations.

The standard process to translate a hardware design from an HDL, such as Verilog or
VHDL, to be placed onto an FPGA is to first synthesise the hardware design, which generates
a lower level netlist description of the hardware in terms of the resources that are available
on the FPGA. Next, the netlist is place-and-routed on the FPGA, which assigns a physical
location to each resource and programs the interconnects so that all the components are
connected properly. This low-level description of the hardware is then turned into a bit

28

2.2 An Introduction to Verilog

1 module main(input rst, input y, input clk,

2 output reg z);

3 reg tmp, state;

4 always @(posedge clk)

5 case (state)

6 1'b0: tmp <= y;

7 1'b1: begin tmp <= 1'b0; z <= tmp; end

8 endcase

9 always @(posedge clk)

10 if (rst) state <= 1'b0;

11 else case (state)

12 1'b0: if (y) state <= 1'b1;

13 else state <= 1'b0;

14 1'b1: state <= 1'b0;

15 endcase

16 endmodule

(start/x

(1/1

(0/1

00 1x

01

xx
01

Figure 2.2: A simple state machine implemented in Verilog, with its diagrammatic repres-
entation on the right. The x stands for ‘don’t care’ and each transition is labelled with
the values of the inputs rst and y that trigger the transition. The output that will be
produced is shown in each state.

stream that will program all the individual resources on the FPGA. The result can be seen
in figure 2.1 by looking at the highlighted paths in red, as the place-and-route process
placed logical functions into LUTs and connected them together making use of a BRAM
and a DSP.

2.2 An Introduction to Verilog

This section will introduce Verilog for readers who may not be familiar with the language,
concentrating on the features that are used in the output of Vericert. Verilog [IEEE 2006]
is an HDL and is used to design hardware ranging from complete CPUs that are eventually
produced as integrated circuits, to small application-specific accelerators that are placed
on FPGAs. Verilog is a popular language because it allows for fine-grained control over
the hardware, and also provides high-level constructs to simplify development.

Verilog behaves quite differently to standard software programming languages due to it
having to express the parallel nature of hardware. The basic construct to achieve this is
the always-block, which is a collection of assignments that are executed every time some
event occurs. In the case of Vericert, this event is either a positive (rising) or a negative
(falling) clock edge. All always-blocks triggering on the same event are executed in parallel.
Always-blocks can also express control flow using if-statements and case-statements.

29

2 Background

A simple state machine can be implemented as shown in figure 2.2. At every positive
edge of the clock (clk), both of the always-blocks will trigger simultaneously. The first
always-block controls the values in the register tmp and the output z, while the second
always-block controls the next state the state machine should go to. When the state

is 0, tmp will be assigned to the input y using nonblocking assignment, denoted by <=.
Nonblocking assignment assigns registers in parallel at the end of the clock cycle, rather
than sequentially throughout the always-block. In the second always-block, the input y
will be checked, and if it is high it will move on to the next state, otherwise it will stay in
the current state. When state is 1, the first always-block will reset the value of tmp and
then set z to the original value of tmp, since nonblocking assignment does not change its
value until the end of the clock cycle. Finally, the last always-block will set the state to 0
again.

2.3 High-Level Synthesis

High-level synthesis is the transformation of software directly into hardware. There are
many different types of HLS, which can vary in terms of the languages they accept or the
devices that are targeted, however, they often share similar steps in how the translation is
performed, as they all go from a higher level, behavioural description of the algorithm to a
timed hardware description. In this dissertation, I will assume that I am targeting FPGAs
instead of ASICs, which means there are often different constraints in terms of available
resources, as well as clock frequency.

The main steps performed in the translation of an HLS tool is the following [Andrew
Canis et al. 2013; Coussy et al. 2009]:

Compilation of input language First, the program or specification written in the input
language to the HLS tool is compiled into an intermediate language that is more
suitable to be transformed by optimisations. The input language for most traditional
HLS tools is a restricted version of C or C++, however, HLS tools such as Google
XLS [Google 2023] can use a domain-specific language (DSL) based on communic-
ating sequential processes [Hoare 1978] as an input specification as well. There
are also HLS tools based on OpenCL [Intel 2020b] or Matlab through the Simulink
block diagram language [Ou and Prasanna 2005]. This specification is then turned
into some intermediate language that is easier to manipulate through optimisations
and transformations to hardware. This includes intermediate languages such as the

30

2.3 High-Level Synthesis

LLVM intermediate representation (IR) [Lattner and Adve 2004], MLIR [Lattner et al.
2021] or a custom representation of the code. The structure of these intermediate
languages is further discussed in section 2.3.2.

Hardware resource allocation Depending on if the hardware target is a specific FPGA
or an ASIC built on a specific technology library, the HLS tool will have to allocate
resources differently. For example, on FPGAs there are only a limited number of
LUTs, DSPs and BRAM available. The HLS tool therefore often decides ahead of time
which resources the program will need based on the operations that are present
in the program. A few resources are often assumed to be infinite to simplify the
resource allocation, examples being registers, which are normally cheap especially
on FPGAs, or simple logic circuits that are cheap enough to be duplicated such as
integer adders or multiplexers. Other circuits may require more resources in which
case it would make sense to only have a few instantiations of the circuit and share it
as much as possible. Examples of these circuits could be integer division modules
or floating point arithmetic units that will most likely not have dedicated hardware
on the FPGA and would therefore have to be implemented in logic. These circuits
also often have trade-offs between area, latency and throughput which should be
considered, and will be important in the operation scheduling step. Finally, memory
and multiplication units lie in the middle, where there are usually enough BRAMs
or DSPs resources on the FPGA, but they might introduce different challenges such
leading to designs that are more difficult to place-and-route. In particular, if one uses
too many of these resources, BRAMs and operations in the DSPs can be implemented
using LUTs.

Operation scheduling Once the available resources have been chosen, the operations
in the intermediate representation need to be scheduled into a clock cycle based on
these resource constraints, creating a timed representation of the program. The goal
of the operation scheduling step is to maximise the instruction-level parallelism of
the program while also honouring the various resource constraints that are imposed
by the available resources. Scheduling is further described in section 2.4. As part
of the scheduling step, operations are also often preliminarily bound to specific
resources.

Resource binding After scheduling, each operation is assigned a concrete instantiation of
its resource. For example, an integer divide operation will be assigned to the integer

31

2 Background

divider resource, and if this resource is used by another divider in the design, the
inputs and outputs will have to be multiplexed. The resource constrained scheduling
step should have ensured that two divisions are not taking place in the same cycle,
and that the result of the division will only be used when the divider resource has
finished computing the result.

Hardware description generation Finally, the hardware description is generated from
the code that was described in the intermediate language and from the states and
resources that each operation and register was assigned to.

There are many examples of existing high-level synthesis tools, the most popular ones
being Bambu HLS [Pilato and Ferrandi 2013], LegUp [Andrew Canis et al. 2013], Vitis
HLS [AMD 2023b], Catapult C [Siemens 2021], Google XLS [Google 2023] and Intel’s
OpenCL SDK [Intel 2020b]. These HLS tools all accept general programming languages
such as C/C++ or OpenCL.

The concept of HLS has also evolved over time, from describing the transformation
of the behavioural level of Verilog and VHDL to the register-transfer level in the 90s, to
describing the transformation of C code into hardware automatically like tools do today,
as synthesis tools have accepted increasingly larger subsets of Verilog and VHDL that
include the behavioural level. In addition to that, languages like Bluespec [Nikhil 2004]
are also considered HLS tools despite having different goals to more traditional HLS tools
accepting C code. Bluespec provides a high-level hardware specification language that
can be used to define concurrently running rules. These are automatically scheduled by
the Bluespec synthesis tool and converted to a traditional synthesisable HDL. Handel-
C [Aubury et al. 1996; Bowen 1998] is in a similar position, being a C-like language for
hardware development. It supports many C features such as assignments, if-statements,
loops, pointers and functions. In addition to these constructs, Handel-C also supports
explicit concurrency as well as sequential or parallel assignments, similar to blocking and
nonblocking assignments in Verilog. It therefore was popular as a hardware/software
co-design language as the language could naturally be used to define sequential code
running in software and parallel code which could be synthesised to hardware. However,
it is inherently timed, and the Handel-C synthesis tool does not usually perform automatic
parallelisation of the code as is the case with HLS tools that accept C as input.

In this dissertation I will be focusing on the more traditional HLS conversion from
software languages into hardware designs.

32

2.3 High-Level Synthesis

2.3.1 Data structures for intermediate languages

This section describes how intermediate languages in the HLS flow are usually represented
and the differences in these approaches. Next, in section 2.3.2 I will describe techniques used
to group instructions into a contiguous blocks to simplify analyses and transformations of
instructions within the blocks.

There are many ways to represent the code that makes up a function or a program.
High-level languages that are written by the programmer are normally represented as an
abstract syntax tree (AST) in the front end of the compiler, which is a tree representing the
parsed source file. An AST is a good representation for high-level optimisations that may
need information about the intent of the programmer. An example being a loop which
is represented as a structured for-loop instead of unstructured goto statements. On the
opposite end, the assembly that will run on the processor can simply be represented by a
list of instructions. This simple representation of the program is useful because individual
instructions can directly be stored contiguously in memory and are then loaded by the
processor to be executed. However, storing instructions as a list means that much of the
original structure of the program is lost, whichmakes program analysis and transformations
more difficult. In between these two representations, there is often one ormore intermediate
languages that can be represented in a variety of ways, and are either used purely for
analysis or also as an intermediate transformation step.

Lists

An example of a list representing code is shown abstractly in figure 2.3a. In the figure,
the solid arrows between nodes show how the instructions are stored as a linked list, one
instruction feeding to the next. However, programs may have loops in them, which cannot
directly be expressed in the list representation, as each instruction can only have one
successor. Instead, instructions that are represented as a list will have labels attached to
them, and goto instructions can then jump to those labels. These jumps are represented
using the dashed arrows in the figure. This is the simplest representation of the code as it
is completely linear, however, analysing such a program will be more difficult because a
lot of information, like information on many of the edges, is implicit in the representation.
Every analysis pass would have to reconstruct the control-flow edges between the nodes,
which would have to be stored as a graph, so lists are likely only the final representation
of the code.

33

2 Background

(a) List
(b) Control-flow

graph (CFG) (c) Data-flow graph (DFG)
(d) Control- and data-

flow graph (CDFG)

Figure 2.3: Comparison of lists, control-flow graphs, data-flow graphs and control- and
data-flow graphs.

Control-flow graphs

Instead, a control-flow graph (CFG) representation of the code is a graph instead of a
list, and allows any instruction to be connected to any other instruction explicitly by a
control-flow edge. This signifies that after executing an instruction, the execution will then
move to one of the successors of the current node. This turns control-flow analysis into
a graph problem [Allen 1970], simplifying many program analysis passes and making it
more natural to traverse the program with graph search algorithms. Figure 2.3b shows
how the list representation of the code would be represented as a CFG, where nodes can
now have multiple outgoing or incoming edges. Because the edges represent control flow,
only one edge will be taken at a time as the program executes.

Data-flow graphs

Alternatively, instead of reasoning about the control flow of the program, one might be
interested in the data flow of the program. Many compiler optimisations, such as dead-code
elimination or constant propagation, need to perform data-flow analyses on the CFG [Kam
and Ullman 1976; Kildall 1973]. In addition to that, hardware circuits are naturally expressed
using pure data flow as netlists can be viewed as data flow graphs, and even HDLs can be

34

2.3 High-Level Synthesis

modelled by synchronous data flow programming languages [Halbwachs et al. 1991]. One
could therefore represent the code as a pure data-flow graph (DFG) to help with data-flow
optimisations as well as the translation to the final hardware. An example of the CFG
shown in figure 2.3b being represented as a DFG is shown in figure 2.3c, where arrows
now represent data dependencies between nodes instead of control-flow dependencies.

As can be observed in the diagram, the edges between the nodes are very different to
the edges in the CFG. Nodes in the CFG may not have needed to be in that particular
order, because when two instructions are independent, one still needs to define an order
between them. This is necessary due to the sequential nature of the CFG, instead, the DFG
only represents the necessary edges between the nodes. Additionally, we have added two
additional nodes to handle the back edges of the loop, which are also data dependencies.
These nodes are represented by a trapeze in the DFG and act as loop headers to control
the loop iterations when interpreting the graph as pure data flow. These additional nodes
are needed because otherwise the data dependencies due to the back edges of the loop
would conflict with the data dependency that actually enters the loop. We therefore need
an additional node to turn the data dependencies into the correct control-dependencies,
allowing data into the loop when the loop is not executing, but while it is executing the
node should only allow data through from the back edge of the loop. The example shown
in figure 2.3c is similar to the concepts of `-nodes in gated static single assignment form
and the program dependence web [Campbell et al. 1993; Havlak 1994; Ottenstein et al.
1990; Tu and Padua 1995], which are intermediate languages that can be interpreted in a
data flow oriented context.

Control- and data-flow graphs

As mentioned in the previous section, loops are especially problematic for pure DFGs.
Instead, one can try to get the best of both CFGs and DFGs by creating a control- and
data-flow graph (CDFG). In a CDFG, one instead has a CFG where each node is a DFG
instead of just an instruction. The example is shown in figure 2.3d, where the dashed arrows
are control dependencies between DFGs, and the solid lines are the data dependencies
within the DFG. In this way, loops can be supported without having to introduce special
nodes, leaving the loop back edge as a control dependency instead. DFGs can represent the
sections of code without arbitrary incoming control-flow edges using data dependencies,
thereby being more flexible in how instructions are rearranged without the downside of
having to introduce additional nodes.

35

2 Background

(a) Basic blocks (b) Superblocks (c) Hyperblocks

Figure 2.4: Comparison of basic blocks, superblocks and hyperblocks.

2.3.2 Grouping instructions into blocks

This section describes the representation of intermediate languages that are often used
within an HLS tool. In particular, we will base our intermediate language on a CFG, but will
describe various ways to group blocks of instructions together and describe the advantages
and drawbacks that they provide. Especially when considering compiler targets that allow
for instruction-level parallelism, such as very large instruction word (VLIW) processors or
custom hardware, it is important to schedule instructions so that the parallelism can be
exploited. Various ways in which instructions can be grouped affect the size of the regions
of instructions that can be scheduled together, and therefore affect the performance that
can be achieved [Faraboschi et al. 2001], due to how much reordering the scheduler can
perform.

Basic blocks

To build a bit more structure in the CFG, it is useful to group non-branching instructions
without any incoming edges together forming basic blocks. An example of the CFG
segmented into basic blocks is shown in figure 2.4a. Instructions within a basic block
can then be represented as a list of instructions, as there cannot be any branches, and
these lists of instructions can then be safely manipulated because there is a guarantee
that there is no incoming control flow in the middle of a basic block. For example, as

36

2.3 High-Level Synthesis

long as two instructions in a basic block are independent, they can be safely reordered.
This would have otherwise not been a case, because incoming control flow may mean
that reordering the instructions now leads to the unintended execution of an instruction.
Basic blocks are used by IRs in real compilers such as Gimple in GCC or LLVM IR in
clang as the default grouping of sequential instructions. They are a useful representation
for various optimisations and transformations, because the CFG can be viewed as being
coarser grained when manipulating control flow, because one does not have to inspect the
control flow within basic blocks, and provides useful assumptions that can be made when
performing intra-block transformations.

Superblocks

As figure 2.4a shows, one issue with basic blocks is that they are often quite small, therefore
limiting the benefits that they can provide. One extension to basic blocks is superb-
locks [Hwu et al. 1993], shown in figure 2.4b. Superblocks extend the notion of basic blocks
to contiguous regions without arbitrary incoming control-flow edges, but with multiple
control-flow edges out of the superblock. The main benefit of this is that due to the extra
flexibility of the multiple exits, superblocks can contain arbitrary linear traces through
regions of non-looping code. The ‘hot path’ of the loop body can be grouped into a single
superblock for example, which can then be heavily optimised. Various other important
paths through the program can then also be grouped and optimised together. If different
paths through the program reuse nodes from another path, as is shown with the pink and
yellow nodes in figure 2.4b, then these nodes will have to be duplicated so that they can be
included in a different path. As long as any optimisation takes into account the arbitrary
exits that are possible in superblocks, the nodes within a superblock can be optimised
independently from the rest of the code.

Unlike basic blocks, superblocks are not generally used to represent the IR itself, and
they are mainly used to perform superblock scheduling. GCC, for example, implements a
superblock scheduling optimisations, but does not use the superblock representation for
other transformations passes.

Hyperblocks

One downside of superblocks is that they cannot represent branching and joining control
flow within a single block. For example, the block present in the CDFG shown in figure 2.3d
could not be represented by a superblock. Hyperblocks are defined as basic blocks of

37

2 Background

predicated instructions with arbitrary outgoing edges [Mahlke et al. 1992]. They can
represent arbitrary branching and joining control flow without arbitrary incoming control-
flow edges, and are therefore an extension to superblocks. This means that they could
represent the CDFG shown in figure 2.3d, and an example of a hyperblock is shown
in figure 2.4c, where in practice code within the hyperblock has been linearised using
predicated instructions, instead of being represented as a graph. This leads to possibly
more complex control flow than in both of the previous cases, however, it can be reasoned
with using a SAT or SMT solver as the path information is part of the predicates.

Superblocks may require many blocks to be duplicated to group all the wanted instruc-
tions together. However, with predicated instructions, hyperblocks can represent joining
control flow without having to duplicate any blocks because predicates can be selected
so that the block is executed when either incoming edge is taken. Hyperblocks are not
common in regular compilers, because predicated execution is rare in modern instruction
set architectures. For example, Arm recently removed most conditionally executed instruc-
tions from their A64 ARMv8 ISA, because ‘predicated execution of instructions does not
offer sufficient benefit to justify its […] implementation cost in advanced implementations’
(Arm [2011, sec 3.2, p. 10]). However, hyperblock scheduling has been a popular interme-
diate language for HLS [Budiu and Goldstein 2002; Callahan and Wawrzynek 1998], as
the flexibility of targeting hardware directly means that predication can be implemented
efficiently.

2.4 Scheduling

Instruction scheduling is the main transformation and optimisation performed by tradi-
tional HLS tools. The scheduling transformation introduces time into the untimed input
representation by placing each instruction into a clock cycle in which it should execute.
The scheduler must take into account the resources that were selected during the resource
allocation step and schedule the instructions so that they meet certain constraints. In
this section I will discuss scheduling techniques used by HLS tools, first discussing static
scheduling in section 2.4.1, which is the scheduling algorithm used by Vericert in this disser-
tation, followed by describing dynamic scheduling in section 2.4.2, which is an alternative
scheduling technique with different trade-offs to static scheduling.

38

2.4 Scheduling

2.4.1 Static scheduling

Static scheduling is used by the majority of synthesis tools [AMD 2023b; Andrew Canis
et al. 2013; Intel 2020b; Roane 2023; Siemens 2021] and means that the time at which each
operation will execute is known at compile time. The first step is to generate a CDFG,
which is either already the structure of the code, or can be generated from a hyperblock
CFG representation, for example, by using static analysis on each hyperblock to gather all
data dependencies and convert them into DFGs.

Scheduling can have different optimisation goals for the design in terms of latency and
resource usage. In the simplest case, each operation in the DFG can be scheduled as soon
as its predecessor in the graph has been scheduled, resulting in an as soon as possible
(ASAP) schedule, where the start time of each node corresponds to the longest path from
the start of the DFG to that node. If instead the start time of a node is taken to be the
longest path from the node to the end of the DFG, then this would result in an as late as
possible (ALAP) schedule. The difference between these two types of schedules shows the
slack of a particular operation, which can be exploited by schedulers to minimise resources
while also minimising latency.

A more advanced scheduler can either optimise for resource usage based on a maximum
latency or for latency based on a maximum amount of resources. In general this is an
NP-hard problem, however, list scheduling provides a heuristic for this problem by ordering
nodes that can be scheduled according to a priority function and picking a subset of these
nodes to actually be scheduled as long as the resources used by the subset is not greater
than the available resources.

System of difference constraints scheduling

The main static scheduling algorithm used by HLS tools is the system of difference con-
straints (SDC) scheduling algorithm [Cong and Zhang 2006]. It generates an SDC that
is a subset of an linear programming (LP) problem that can be incrementally modified
and checked for feasibility as new constraints are added. Then, to solve the SDC it can be
converted into an LP problem guaranteeing integer solutions.

The scheduling algorithm is built on the notion of constraining scheduling variables for
an operation E (sv8 (E)). Each operation is associated with a set of scheduling variables, but
at a minimum it must have an initial and a final scheduling variable (svinit(E) and svfin(E)).
The main advantage of this scheduling algorithm is that one can define different concepts
as constraints in terms of scheduling variables. For example, if one has a data dependency

39

2 Background

from operation 0 to operation 1, the following constraint is added to the SDC.

svfin(0) − svinit(1) ≤ 0

Other types of constraints that are normally added to get a valid schedule are:

Control dependency constraint Constraint between blocks of instructions that are
connected by a control-flow dependency. This ensures that a block is not scheduled
before another block it depends on. In particular, loop back edges therefore need to
be removed during the SDC construction, as otherwise the system would become
unsatisfiable.

Relative timing constraint This constraint ensures that two operations are separated by
at least or at most a fixed number of cycles. This can be used to satisfy I/O timings.

Latency constraint This constraint specifies a maximum latency for a set of blocks.

Cycle time constraint This constraint is used to target a specific final clock period, and
split up long combinational paths through the DFG into separate cycles. This allows
for operation chaining, whereby multiple operations that are estimated to have a
latency less than a clock cycle can be chained within the same clock cycle.

Resource constraint To handle limited resources, constraints can be used to make it
infeasible to have operations use the same resource within the same clock cycle.
Constructing these constraints relies on a linear ordering of the DFG, so some
combination of ALAP or ASAP scheduling can be done to form the linear ordering
before the actual scheduling step.

Solving the SDC with different optimisation functions produces different kinds of sched-
ules. For example, optimising the following function will produce an ALAP schedule, as
the start time of every operation is maximised.

max
∑
E∈+op

svinit(E)

Modern HLS tools often use a variation of SDC scheduling. For example, Vitis HLS and
LegUp use an extension of SDC scheduling [A. Canis et al. 2014; Zhang and Liu 2013]
with support for modulo scheduling (loop pipelining) [Rau 1996] and Bambu HLS uses
an extension of SDC scheduling with support for speculative execution and loop code

40

2.5 Verification

motion [Lattuada and Ferrandi 2015]. In this dissertation, SDC scheduling refers to the
initial implementation of the scheduling without any extensions.

2.4.2 Dynamic scheduling

On the other hand, dynamic scheduling [Josipović et al. 2018] does not require the schedule
to be known at compile time and instead it generates latency insensitive circuits [Carloni
et al. 2001], that use tokens to schedule operations at runtime. Whenever the data for
an operation is available, it sends a token to the next operation, signalling that the data
is ready to be read. The next operation does not start until all the required inputs to the
operation are available, and once that is the case, it computes the result and then sends a
token declaring that the result of that operation is also ready. The benefit of this approach
is that only basic data-flow analysis is needed to connect the tokens correctly, however,
the scheduling is done dynamically at run time, depending on how long each primitive
takes to finish and when the tokens activate the next operations.

The benefit of this approach over static scheduling is that the latency of these circuits is
normally significantly lower than the latency of static scheduled circuits, because they can
take advantage of runtime information of the circuit. However, because of the signalling
required to perform the runtime scheduling, the area of these circuits is usually much
larger than the area of static scheduled circuits. In addition to that, much more analysis is
needed to properly parallelise loads and stores to prevent bugs, which requires the addition
of buffers in certain locations.

An example of a dynamically scheduled synthesis tool is Dynamatic [Josipović et al.
2018], which uses a load-store queue (LSQ) [Josipović et al. 2017] to order memory op-
erations correctly even when loops are pipelined and there are dependencies between
iterations. In addition to that, performance of the dynamically scheduled code is improved
by careful buffer placement [Josipović et al. 2021], which allows for better parallelisation
and pipelining of loops.

2.5 Verification

Theorem provers can be categorised into two main types: automatic theorem provers
described in section 2.5.1 and interactive theorem provers described in section 2.5.2. This
section will give a brief overview of the characteristics of these different verification tools.

41

2 Background

2.5.1 Automatic theorem provers

Automatic theorem provers are tools that can reason about logic automatically, and answer
whether a theorem about some variables is true or whether there exists a counter example.
Most automatic theorem provers are implemented around SAT or SMT solvers, which can
be characterised as deciding if a formula is satisfiable or not by finding an assignment that
satisfies the formula. These solvers can also be used to used to prove that a theorem holds
by showing that the negation of the theorem is unsatisfiable, in which case there is no
assignment that satisfies the negation of the theorem, which implies that the theorem must
hold for all assignments. In SAT, the formula is purely boolean, but in SMT the boolean
formula may include arbitrary theories that extend the logic, for example by including
linear integer arithmetic or a theory of arrays that may have specialised solvers for the
theory. This widens the space of problem that can be efficiently encoded in the logic
by making use of specialised solvers for different domains, as opposed to encoding the
problem using boolean logic, which quickly becomes infeasible due to the exponential
growth of the formulas. Furthermore, SMT solvers such as Z3 [Moura and Bjørner 2008],
cvc5 [Barbosa et al. 2022], Boolector [Brummayer and Biere 2009] or veriT [Bouton et al.
2009] can be used by higher level automatic verification tools such as bounded model
checkers like CBMC [Kroening and Tautschnig 2014] or verification aware programming
languages like Dafny [Leino 2010].

Automatic theorem provers are also the basis for formal hardware verification and
equivalence checking, because the formal properties that need to be proven, as well as
the hardware design itself, can be encoded in SMT. Symbiyosys [YosysHQ 2023], an open
source formal verification for hardware, does exactly this by synthesising the hardware
design including its assertions to SMT-LIB2 [Barrett et al. 2017], a standard input language
to SMT solvers. If the SMT solver can show that the the assertions are unsatisfiable, this
implies that the properties in the hardware will always hold. Commercial verification tools
like Cadence Conformal [Cadence 2023a] and Synopsys VC Formal [Synopsys 2023] use
similar techniques, but provide use more complex solver orchestration to enable larger
scale automatic verification of formal properties [Koelbl et al. 2009]. More details about
current hardware verification methodologies are given in section 2.6.1, especially as they
apply to HLS.

How can one trust the answer of such automatic theorem provers? From a high-level,
they are running an opaque, highly optimised algorithm and return an answer to the
problem, which may be incorrect. If the formula is satisfiable, the solution is simple: the

42

2.5 Verification

solver can provide a model that satisfies the formula. Checking if the solver gave the right
answer is just a matter of checking that the model satisfies the formula. If the formula is
unsatisfiable, the solver will return ‘unsat’ as the answer as there is no model. Checking
that a formula is actually unsatisfiable without having to trust the SMT solver can be done
if the SMT solver can generate a proof witness, which can be checked by an independent,
trusted checker. Proof witnesses are normally a series of rewrites of axioms or basic lemmas
that translate the original formula into false. If one trusts the checker, one does not have to
trust the SMT solver, because if it can generate a valid proof witness, then one knows that
the formula has to be equivalent to false. Some examples of SMT solvers that can generate
proof witnesses are veriT [Bouton et al. 2009] or cvc5 [Barbosa et al. 2022], and the proof
witnesses generated by these tools can actually be checked by a formally verified proof
checker called SMTCoq [Armand et al. 2011], so that these proofs of SMT formulas can be
used in a verified context.

Unfortunately, equivalence checkers used to verify designs or formal verification tools
to prove assertions about hardware normally do not produce a proof witness that can be
independently checked. This means that especially with the commercial, closed source
formal verification tools, one has to trust that the result they produce is correct. Addition-
ally, when automatic verification tools cannot prove the equivalence between two designs,
for example, it is often unclear what additional information the checker needs to complete
the proof. Instead one often has to guess where the solver is getting stuck, and provide
assertions to guide it in the right direction.

2.5.2 Interactive theorem provers

Interactive theorem provers like Coq [Bertot and Castéran 2004], Isabelle [Paulson 1994]
or Lean [Moura et al. 2015], on the other hand, focus on checking proofs that are provided
to them, instead of automatically trying to prove theorems. These proofs can either be
written manually by the user in a tactic language provided by the theorem prover, or
automatically generated by external decision procedures, such as an automatic theorem
prover that produces a witness. One benefit of using an interactive theorem prover is that
the proof is checked by a small, trusted kernel.

Interactive theorem provers can help with verifying complex theorems, such as proving
the correctness of a C Compiler, as is the case with CompCert, or prove the correctness
of an operating system kernel like sel4 [Klein et al. 2009] or the four colour theorem
proof [Gonthier 2008]. Interactive theorem provers are more suited to large scale verifica-

43

2 Background

tion projects compared to pure automatic theorem provers because they often combine
the benefits of automation provide by automatic theorem provers, and the more granular
manipulation of proofs provided by the interactive theorem prover itself as the tactic lan-
guage, while having a small trusted computing base. Proofs can be developed by witnesses
produced using automated solvers when the problem is small enough to be tractable, and
they can then be stitched together to prove more difficult theorems that could not have
been proven automatically.

In practice, formalising projects in an interactive theorem prover leads to the formalisa-
tion of a lot of technical detail which may not have been present in the paper formalisation.
One has to be precise when describing the behaviour of a system, and these details will
have to be reasoned about in all proofs. It is therefore important to design abstractions
carefully so that proofs can be reused, and so that proofs can be modified if definitions are
tweaked.

More details on how an interactive theorem prover is used to develop verified programs
is described in sections 2.6.2 and 2.7.

2.6 Verification of High-Level Synthesis

This section describes current ways in which designs generated by HLS tools are valid-
ated. First, I will describe unmechanised verification of HLS tools, meaning testing and
verification methodologies that have not been formalised in a theorem prover. Next, I will
describe mechanised verification around HLS.

A summary of the related works can be found in figure 2.5, which is represented as an
Euler diagram. The categories chosen for the Euler diagram are: whether the tool is usable,
whether it takes a high-level software language as input, whether it has a correctness proof,
and finally whether that proof is mechanised. The goal of Vericert is to cover all of these
categories.

Most practical HLS tools [AMD 2023b; Andrew Canis et al. 2013; Intel 2020b; Nigam
et al. 2020] fit into the category of usable tools that take high-level inputs. On the other
end of the spectrum, there are tools such as BEDROC [Chapman et al. 1992] for which
there is no practical tool, and even though it is described as high-level synthesis, it more
closely resembles today’s logic synthesis tools.

Ongoing work in translation validation [Pnueli et al. 1998] seeks to prove equivalence
between the hardware generated by an HLS tool and the original behavioural description

44

2.6 Verification of High-Level Synthesis

in C. An example of a tool that implements this is Siemens’s Catapult [Siemens 2021],
which tries to match the states in the hardware description to states in the original C code
after an unverified translation. Using translation validation is quite effective for verifying
complex optimisations such as scheduling [Chouksey and Karfa 2020; Karfa et al. 2006;
Youngsik Kim et al. 2004] or code motion [Banerjee et al. 2014; Chouksey et al. 2019], but
the validation has to be run every time the HLS is performed. In addition to that, the proofs
are often not mechanised or directly related to the actual implementation, meaning the
verifying algorithm might be wrong and hence could give false positives or false negatives.

Finally, there are a few relevant mechanically verified tools. First, Kôika is a formally
verified translator from a core fragment of Bluespec into a circuit representation which
can then be printed as a Verilog design. This is a translation from a high-level hardware
description language into an equivalent circuit representation, so is a different approach
to HLS. Lööw and Myreen [2019] used a proof-producing translator from HOL4 code
describing state transitions into Verilog to design a verified processor, which is described
further by Lööw et al. [2019]. Lööw [2021] has also worked on formally verifying a
logic synthesis tool that can transform hardware descriptions into low-level netlists. This
synthesis back end can seamlessly integrate with the proof-producing HOL4 to Verilog
translator as it is based on the same Verilog semantics, and therefore creates verified
translation from HOL4 circuit descriptions to synthesised Verilog netlists. Perna and
Woodcock designed a formally verified translator from a deep embedding of Handel-C
into a deep embedding of a circuit [Perna and Woodcock 2012; Perna et al. 2011]. Finally,
M. Ellis [2008] used Isabelle to implement and reason about intermediate languages for
software/hardware compilation, where parts could be implemented in hardware and the
correctness could still be shown.

2.6.1 Unmechanised verification of HLS

This section describes how HLS designs are typically verified and describes the current
state-of-the-art in verification of HLS transformations. The standard way to test designs in
HLS is either using hardware test benches, testing the final hardware design like any other
hardware design, or by using C/Verilog co-simulation, which is a feature some HLS tools
support, whereby the same test code that drove the C code can also be used to drive the
hardware design. Metrics such as code coverage or functional coverage can be gathered to
check which parts or behaviours of the design were exercised, however, these coverage
metrics generally do not imply full correctness of the design. Functional coverage is

45

2 Background

Standard HLS tools
[Andrew Canis et al. 2013]
[AMD 2023b; Intel 2020b]

[Nigam et al. 2020]

Translation validation approaches
Siemens [2021], Clarke et al. [2003]

and Kundu et al. [2008]

Vericert

Kôika
[Bourgeat et al. 2020]

Lööw [2021]

M. Ellis [2008]
Perna and Woodcock [2012]

BEDROC [Chapman et al. 1992]Correctness
proof

Mechanised
correctness proof

Usable tool High-level software input

Figure 2.5: Summary of related work

46

2.6 Verification of High-Level Synthesis

especially interesting, as the verification engineer defines how much of the design should
be tested. If the behaviour that needs to be covered is too large, testing will not be able to
achieve full coverage of the entire design. On the other hand, if the specified behaviour to
be tested is quickly saturated, it is likely that many behaviours will remain untested.

Translation Validation

Instead, the equivalence between the higher-level input code and the hardware design can
sometimes be proven automatically. There are commercial tools that claim to support such
equivalence checks, such as Siemens’s SLEC [Chauhan 2020], Cadence’s C2RTL [Cadence
2023b] or Synopsys’s HECTOR [Koelbl et al. 2021], which try to match the states in
the register-transfer level description to states in the original C code after an unverified
translation. However, in general this does not scale to large designs because of the explosion
in the size of the state and the semantic gap between the software model and the hardware
design, leading to various ways in which the equivalence checking problems needs to
be partitioned to be tractable, which may not always succeed automatically. This leads
to manual proof engineering work that is required to reduce the size of the equivalence
checking problem, leading to the same issues that were discussed in section 2.5.1, such as
having to guess where the solver is getting stuck.

This technique is called translation validation [Pnueli et al. 1998], whereby the translation
that the HLS tool performed is proven to have been correct for that specific input by
implementing a validator that decides if the input and output of the transformation are
equivalent. In addition to the commercial tools mentioned previously, there has been
research on verifying specific HLS optimisations correct using translation validation as
well, such as scheduling [Chouksey and Karfa 2020; Karfa et al. 2006; Youngsik Kim
et al. 2004] or code motion [Banerjee et al. 2014; Chouksey et al. 2019]. Even though
many of these papers are accompanied by proofs of correctness, these proofs are often
not mechanised or directly related to the actual implementation, meaning the verifying
algorithm might result in false positives.

More examples of translation validation for proofs about HLS algorithms [Chouksey
and Karfa 2020; Chouksey et al. 2019; Karfa et al. 2006, 2010, 2008; Chandan Karfa et al.
2012, 2007; Kundu et al. 2008; Sudipta Kundu et al. 2007] are performed using an HLS
tool called SPARK [Gupta et al. 2003]. These translation validation algorithms can check
the correctness of complicated optimisations such as code motion or loop inversions.
These transformations are all verified as transformations on the SPARK IR. In general,

47

2 Background

these validation algorithms work by constructing a finite-state machine with data path
(FSMD) [Hwang et al. 1999] representation, then partition the states and match them up
using cut points. Finally, symbolic expressions are constructed for paths between cut
points and are checked to be equivalent between the original and transformed design.

Even though the correctness of the verifier is proven correct in the papers, the algorithm
implementing the verifier might still include bugs. It is therefore possible that output is
accepted even though it is not equivalent to the input. In the case of SPARK, there are no
validation checks for the translation from C to the internal IR, as well as no checks for the
final translation from the IR to Verilog. In addition to that, using translation validation
to prove the correctness of the complete HLS translation either means that one needs an
algorithm that verifies all transformations at once, or, like it is the case in SPARK, describes
separate translation validation algorithms for each individual translation. The former
means that the proof of correctness about the validator will be the proof of correctness of
the entire translation, however, in practice, writing such an algorithm and verifying it is
not possible, as the difference between the structure of the input and output will be too
great and unpredictable. Instead, translation validation passes are composed with each
other, however, this requires that one trusts that the composition of different validation
algorithms, with different formulations of their respective soundness criteria, is itself
sound.

Direct Unmechanised Proofs

There has also been work proving HLS correct without using translation validation, but
by showing that the translation itself is correct. The first instance of this is proving the
BEDROC [Chapman et al. 1992] HLS tool is correct. This HLS tool converts a high-level
description of an algorithm, supporting loops and conditional statements, to a netlist and
proves that the output is correct. It works in two stages, first generating a DFG from
the input language, HardwarePal, then optimising the DFG to improve the routing of
the design and the schedule of the operations. Finally, the netlist is generated from the
DFG by placing all the operations that do not depend on each other into the same clock
cycle. Data path and register allocation is performed by an unverified clique partitioning
algorithm. The equivalence proof between the DFG and HardwarePal is done by a proof by
simulation, where it is proven that, given a valid input configuration, applying a translation
or optimisation rule will result in a valid DFG with the same behaviour as the input.

There has also been work on proving the translation from occam to gates [Page and

48

2.6 Verification of High-Level Synthesis

Luk 1991] correctly using algebraic proofs [Jifeng et al. 1993]. This translation resembles
dynamic scheduling as tokens are used to start the next operations. To take advantage of
the parallel nature of hardware, occam has explicit concurrency using the PAR constructs
with channels to share state. Handel-C, a version of occam with many more features such
as memory and pointers, and is described further in section 2.6.2 as there is mechanised
translation from Handel-C into a netlist. One aspect to note about these translations
from occam and Handel-C into netlists is that they are essentially timed languages in
SEQ blocks, because every assignment takes one cycle to complete and expressions are
assumed to finish evaluation within that cycle. No automatic scheduling is performed by
the translation, and the designer has full control over the design and can manually pipeline
and parallelise it.

2.6.2 Mechanised compiler proofs in high-level hardware design

Even though a proof for the correctness of an algorithmmight exist, this does not guarantee
that the algorithm itself behaves in the same way as the assumed algorithm in the proof.
The implementation of the algorithm is separate from the actual implementation, meaning
there could be various implementation bugs in the algorithm that cause it to behave
incorrectly. C compilers are a good example of this, where many optimisations performed
by the compilers have been proven correct, however these proofs are not linked directly
to the actual implementations of these algorithms in GCC or Clang. Yang et al. [2011]
found more than 300 bugs in GCC and Clang, many of them appearing in the optimisation
phases of the compiler. One way to link the proofs to the actual implementations in these
compilers is to write the compiler in a language which allows for a theorem prover to
check properties about the algorithms. Yang et al. found that CompCert only had five bugs
in all the unverified parts of the compiler, meaning this method of proving algorithms
correct provides great confidence that the compiler is correct.

This section explores formalisation of hardware design in general, focusing specifically
on higher level hardware design, by describing formalisations of higher level hardware
description languages that are synthesised to a lower level netlist representation of the
hardware design.

The first mechanisation of a scheduling algorithm for the translation of a higher level
specification to a hardware design is presented by Anderson and Ainscough [1994]. This
formalisation is written in HOL, and describes a scheduler that is proven to obey control
and data dependencies, and implements an ASAP schedule.

49

2 Background

Perna and Woodcock [2012] developed a mechanically verified Handel-C to netlist
translation written in HOL.The translation is based on previous work describing translation
from occam to gates by Page and Luk [1991], which was proven correct by Jifeng et al.
[1993] using algebraic proofs. As Handel-C is an extension of occam with C-like operations,
the translation from Handel-C to gates can proceed in a similar way.

Perna and Woodcock mechanise the compilation of a subset of Handel-C to gates, which
does not include memory, arrays or function calls. In addition to the constructs presented
by Page and Luk, the prioritised choice construct is also added to the Handel-C subset
that is supported. The verification proceeds by first defining the algorithm to perform
the compilation, chaining operations together with start and end signals that determine
the next construct which will be executed. The circuits themselves are treated as black
boxes by the compilation algorithm and are chosen based on the current statement in
Handel-C which is being translated. One interesting property about these circuits is that
the control signal is propagated correctly through the circuit, and that it ensures that only
one hardware construct is active at a time. This is the property that is mechanised in the
work for the translation of Handel-C to netlists. However, the final semantic equivalence
of the translation was not mechanised.

Next, Fe-Si [Braibant and Chlipala 2013], Kami [Choi et al. 2017] and Kôika [Bourgeat
et al. 2020] are all formalisations of derivatives of Bluespec, which popularised rule-based
hardware design whereby rules can be written and reasoned about independently, but
can be scheduled in parallel. Fe-Si focuses on formalising the translation of a Bluespec
derivative to Verilog. Kami, on the other hand, focuses on the modular verification of
hardware designs written in the rule-based hardware design language. Finally, Kôika
provides one-rule-at-a-time reasoning, modularising proofs over rules as well. Kôika also
provides a mechanised compilation from the collection of rules with a schedule into an
equivalent circuit. This circuit can then be pretty-printed as a Verilog design. These are
fundamentally different approaches to increasing the abstraction level of hardware design
compared to translating software into hardware. This mainly comes down to Kôika giving
fine-grained control over the intra-cycle scheduling of rules and both Kôika and Bluespec
give control of the inter-block scheduling which is up to the hardware designer, whereas
in traditional HLS the hardware design is automatically scheduled from the sequential
software definition.

Finally, another related formalisation is Lutsig, a formally verified Verilog synthesis
tool [Lööw 2021]. This is concerned with translating register-transfer level Verilog into

50

2.7 CompCert

netlist level Verilog, instead of translating from a higher level specification into hardware.

2.6.3 HLS formalised in Isabelle

Martin Ellis’ work on the specification of hardware/software co-design [M. Ellis 2008] is
the first attempt towards mechanically verified HLS using Isabelle. The main goal of the
thesis is to provide a framework to prove hardware/software co-design compilers correct,
where part of the design is specified in software and other parts of the design are translated
to equivalent hardware to be accelerated. The dissertation describes the semantics of
an static single assignment (SSA) based software IR which supports partitioning of code
into hardware and software parts, as well as a custom netlist format which is used to
describe the hardware parts and is the final target of the hardware/software compiler. The
dissertation then describes what the correctness would look like between the software and
hardware semantics. The framework used to prove the correctness of the compilation from
the IR to the netlist format is formalised in Isabelle.

As both the input IR and output netlist format have been designed from scratch, there
is neither a description of a translation from a higher level languages into the SSA form,
nor a description on how to map the netlist language onto an FPGA. The main goal of
the thesis is to describe how correctness between the two languages could be stated and
explores how the software language semantics can interact with the hardware semantics.

Finally, it is unclear whether or not a translation algorithm from the IR to the netlist
format was implemented, as the only example in the thesis seems to be compiled by
hand to explain the correctness theorem with respect to that example. There are also no
benchmarks on real input programs showing the efficiency of the translation algorithm,
and it is therefore unclear whether the framework would be able to prove more complicated
optimisations that a compiler might perform on the source code. The dissertation is likely
assuming that high-level programs and their netlist implementations are verified according
to the correctness property manually for each design, as there is no implementation or
proof of an automatic translation from the software code into the mixed software/hardware
design.

2.7 CompCert

CompCert [Leroy 2006, 2009b; Leroy et al. 2016] is a formally verified C compiler written
in Coq [Bertot and Castéran 2004]. The verified compiler in Coq is extracted to OCaml

51

2 Background

code and can then be used. CompCert comprises eleven intermediate languages, which are
used to gradually translate C code into assembly preserving the behaviour. Proving the
translation directly without going through the intermediate languages would be infeasible,
especially with the many optimisations that are performed during the translation, as there
is a large semantic gap between the semantics of Asm and the semantics of Clight. The
first three intermediate languages (C#minor, Cminor, CminorSel) are used to transform
Clight, a deterministic subset of C, into a more assembly-like language called register
transfer language (Rtl). This language consist of a CFG of instructions, and is therefore
well suited for various compiler optimisations such as constant propagation, dead-code
elimination or function inlining. After Rtl, each intermediate language is used to get
closer to the assembly language of the architecture, performing operations such as register
allocation. Figure 2.6 gives a summary of each transformation that takes place in CompCert,
from the input C language to the final native code that is run on the CPU.

CompCert proofs follow two main patterns. The first type of correctness proof is a
direct proof that the algorithm implemented in Coq is correct. These types of proofs do
not carry any run time cost, because they reason purely about the algorithm that was
implemented and they can be erased when the C compiler is extracted to OCaml code.
The translation algorithm itself is proven correct, so no additional code that is associated
with the proof is needed when one is using the compiler. However, some transformations
are easier to build a validator for that checks the result of the transformation instead of
proving that the transformation algorithm always produces correct results. CompCert uses
translation validation to prove the correctness of the register allocation transformation, for
example. Register allocation reduces to the graph colouring problem, where all registers
with overlapping liveness properties are connected by edges. The algorithm is then tasked
to colour the graph with the fewest colours so that connected nodes have different colours.
It is therefore clear that checking the colouring of such a graph is simple, as one can check
that nodes connected by an edge have different colours. However, proving that such an
algorithm will always produce such a graph is more difficult because many heuristics
can be used during the graph colouring to try and achieve the fewest colours efficiently.
The algorithm that checks the colours of the graph is called the validator. CompCert
implements register allocation in this way, performing the register allocation in unverified
OCaml code, and implementing a verified validator for register allocation in Coq. This still
produces a verified translation, as CompCert is allowed to fail on inputs, in which case the
correctness theorem holds trivially. For translation validation, that means that as long as

52

2.7 CompCert

CompCert C

specify evaluation
order

Cstrategy
remove

side-effects Clight simplify

C#minor
stack

allocation
Cminor

instruction
selection

CminorSel

CFG
construction

Rtl
register
allocation

optimisations

Ltl linearisation

Linear

stack frame
layoutMach

assembly
generation

Asm
native code
generation Native Code

Fr
on

t
En

d
B
ac
k
En

d

Figure 2.6: CompCert intermediate languages in the front end and back end of the com-
piler. The parts outside of the coloured boxes are trusted, whereas all the languages
transformations within the coloured boxes are verified and untrusted.

53

2 Background

compilation only proceeds when the validator succeeds, it is equivalent to having verified
the transformation correct. However, using a validator means that it needs to check the
correctness criterion every time the compiler is run, meaning the efficiency of the validator
is also important to take into account.

2.7.1 CompCert correctness theorem

The correctness theorem of CompCert should ensure that the compiler does not introduce
bugs into the program as it is translated from C into assembly. To do so, one must first
define the execution of programs written in C, as well as programs written in assembly.

Small-step semantics Small-step semantics in CompCert are defined as a labelled
transition system. A transition between states B and B′, emitting events C , is denoted as a
single step B C−→ B′. In addition to that, one also needs to designate an initial state and a
final state, the latter returning the final result after executing the program. Finally, each
program is also associated with a global environment. CompCert defines a small-step
semantics framework that can be reused by most languages, providing additional useful
constructs such as the reflexive, transitive closure of −→ denoted as −→∗ or the transitive
‘plus’ closure denoted as −→+. A semantics for a CompCert language is created by defining
the type for the state, for a step in the semantics, and the initial and final states and the
global environment of the program.

Program behaviour Once the semantics have been defined, the global behaviour of
the program can be defined, which will be used to express the correctness theorem. A
C program can behave in three main ways, it can either terminate successfully, diverge,
or finally go wrong. Successful termination happens when the final state is reached from
the initial state, in which case the final state will contain the return-value of the main
function in addition to a finite stream of events. If the program diverges, then the program
is executing indefinitely, in which case it will emit a possibly infinite stream of events
but no return value. Finally, if the program goes wrong, for example when undefined
behaviour is encountered, it means that there is no more valid step defined in the semantics
from the current state.

54

2.7 CompCert

Correctness theorem

The correctness theorem can be stated as a simulation between the semantics of the source
program and the semantics of the compiled program. The final correctness theorem in
CompCert is a backward simulation between the source program semantics and compiled
program semantics, stated as follows, where we write bGc for the presence of value G in an
option type.

Theorem 2.1 (Semantic preservation). If a successfully compiled assembly program � has a
behaviour B which does not go wrong, then there must exist behaviour B′ of source program
(which may be less defined than behaviour B, which is expressed by B′ - B.

compile_c (= b�c =⇒ (∀B .� ⇓ B =⇒ (∃B′. (⇓ B′ ∧ B′ - B))

A direct corollary of this is the following semantic preservation, where one proves that
the source program is safe, i.e. that it is free of behaviour that goes wrong. In that case, one
cannot define any more behaviour, so B must be a valid behaviour for the source program.

Corollary 2.1.1 (Refinement of compilation). If a successfully compiled assembly program
� has a behaviour B and the source program is safe, meaning it is free of undefined behaviour,
then B must be a behaviour of source program (.

compile_c (= b�c ∧ safe(() =⇒ (∀B .� ⇓ B =⇒ (⇓ B)

This theorem correctly conveys the property that the compilation of the source program
should not introduce any bugs, which is especially clear in the corollary. As long as
one proves that the source program does not have any undefined behaviour, then every
behaviour of the compiled program needs to be a behaviour of the source program.

These theorems are proven by showing simulations between the semantics of the source
program and the semantics of the compiled program. In particular, theorem 2.1 can be
proven to hold if one can show a backward simulation between the source program and
the compiled program, which is how the theorem is proven in CompCert. A backward
simulation is a number of relations between states and transitions of the semantics of
both programs. The heart of the backward simulation can be represented as a simulation
diagram and shown in figure 2.7. Figure 2.7a shows the main two types of simulation
diagrams that may hold for a specific transition, where the solid lines represent what can
be assumed, and the dashed lines have to be shown to hold. First, for a step in the compiled

55

2 Background

B1

B2

21

22

C + C

≈

≈

B1

B2

21

22

C ∗ C

≈

≈

with |22 | < |21 |

(a) Backward simulation diagramswith awell-founded order
on the compiled program state.

B1

B2

21

22

C + C

≈

(b) Progress property needed for
the backward simulation.

Figure 2.7: Examples of simulation diagrams that make up the backward simulation.

program from state 21 to state 22 that emits trace C and a state B1 which matches with the
state 21 using the ≈ relation, there must exist one or more steps in the source program that
also emit the same trace C and produce a state B2 that matches with state 22. If the state
transition in the compiled program does not emit a trace, but some measure on the state
has a well-founded order that decreases, then the source semantics may stall as long as B1
matches with both 21 and 22. In addition to that, to be able to show semantic preservation
from the backward simulation, one also needs to prove that the compiled program makes
progress if there exist transitions in the source program from two matching states B1 and
21. This is shown in figure 2.7b.

Backward simulations are hard to prove by induction on the semantics of the compiled
program, because the matching relation requires that one define a decompilation of the
compiled program into the source program to match individual instructions with individual
sections of the code. This may not be possible for many constructs, as statements generally
compile to a group of instructions. Instead, a forward simulation, shown in figure 2.8, is
much more natural to prove correct, because one can induct over the semantics of the
source program and define the matching relation in terms of the compilation. However,
without additional properties, the forward simulation is not sufficient to imply semantic
preservation, because a forward simulation would allow for additional behaviours in the
compiled program that were not behaviours of the source program.

However, if one can show that the semantics of the compiled program is deterministic,
then the forward simulation implies the backward simulation. In addition, forward simula-
tions as well as backward simulations can be composed. This means that one can prove
a forward simulation for each transformation shown in figure 2.6 from Clight to Asm
which implies a forward simulation from Clight to Asm. After showing that the semantics

56

2.7 CompCert

B1

B2

21

22

C

≈

≈
(a) Lock-step

B1

B2

21

22

C C+

≈

≈
(b) ‘plus’

B1

B2

21

22

C C∗

≈

≈

with |B2 | < |B1 |

(c) ‘star’

Figure 2.8: Forward simulation diagrams. The forward simulation is defined in terms of
the more general ‘plus’ or ‘star’ simulation diagrams, however, the lock-step simulation
diagram is a useful special case of the ‘plus’ simulation diagram which can be used for
many of the translation passes.

of Asm is deterministic, one can then prove a backward simulation from Asm to Clight.

2.7.2 Instruction scheduling in CompCert

There are a few implementations of scheduling algorithms in CompCert or in derivatives of
CompCert that are relevant to this dissertation, as the scheduling algorithm is central to the
HLS transformation. First, I will describe implementations of list scheduling in CompCert,
followed by an implementation of superblock scheduling and finally an implementation of
trace scheduling. These scheduling methods all implement validators based on symbolic
execution of the code.

Symbolic expressions are expressions in terms of initial values of registers at the start
of the block. For example, figure 2.9 shows an example of symbolic execution, where
the result is a map from resources, which might be memory or registers, to symbolic
expressions, which are expressions in terms of initial values of registers. The symbolic
execution proceeds sequentially through the linear block and updates the symbolic state.
If a register is read from, its current symbolic expression is looked up in the symbolic state
and replaces the register to build a new symbolic expression.

The symbolic state can then be used to validate code transformations. If the code
transformation only reorders instructions, then the correctness of the transformation only
relies on data dependencies, which is naturally encoded in the symbolic state. As long as
one can show that the symbolic expressions of two registers are structurally equivalent,
then this means that the reordering of instructions did not violate any data dependencies,
and this should imply that the behaviours of the original block and the reordered block are

57

2 Background

z := x + y;

t := z * y;

M[12] := x;

y := M[x];

z ↦→ x0 + y0

t ↦→ (x0 + y0) * y0

M ↦→ store(M0, x0, 12)
y ↦→ load(store(M0, x0, 12), x0)
A ↦→ A 0 for all other registers A

Figure 2.9: Example of symbolic execution adapted from Tristan and Leroy [2008].

identical as well.

List scheduling

Tristan and Leroy [2008] were the first to propose adding scheduling to a verified compiler.
Six et al. [2020] then optimise the validator and extend it so that it works with the Kalray
KVX VLIW processor as a post-pass scheduling step in their translation and is integrated
into a fork of CompCert called CompCert KVX [Six et al. 2023]. In both these cases, the
list scheduling algorithm works on the Mach intermediate language in CompCert, but in
the case of CompCert KVX the list scheduling pass is also used to transform Mach into
Asm. List scheduling is performed on basic blocks. These are implicitly represented in
Tristan and Leroy [2008], but are explicitly constructed in Six et al. [2020] as an AsmBlock
language, making it easier to reason about transformations in individual blocks.

The schedule is validated after the fact by running symbolic execution before and after
scheduling. The symbolic execution of both blocks starts with the same symbolic state,
sequentially symbolically executing each instruction while updating the symbolic state. The
final states reached for both the block before and after scheduling can then be compared. If
the scheduler only reorders instructions, structural equality suffices for comparing symbolic
expressions, as an instruction is only reordered if it does not break any data-dependencies.
In that case, the symbolic expressions for the reordered instruction would be identical
as they were independent. However, the scheduler is unverified, and it could therefore
introduce new instructions. As a result, the comparison of the symbolic state is not enough
to show equivalent behaviour. Consider the following example:

r3 := r2 + 4;
r3 := 5 / r1;

r3 := r2 + 4;scheduling

In this case, the scheduler introduces an additional instruction that is later overwritten.
The symbolic states will therefore be equivalent, however, the transformed block may

58

2.7 CompCert

(a) Graph of trees (b) Block transfer language (Btl)

Figure 2.10: Comparison of the graph of trees structure and the block transfer language
(Btl) structure, extending the comparisons shown in figure 2.4.

encounter undefined behaviour when r1 is 0. To guard against the scheduler introducing
additional instructions that may have undefined behaviour, Tristan et al. introduce the
concept of constraints, which is the set of all previously encountered operations. In the
case of the example, the constraint set of the original block would be empty, whereas the
constraints of the second block would be { 5 / r1 }. For correctness, the scheduled basic
block should therefore not introduce new constraints, like in the previous example. Instead,
the validation has to ensure that the constraints of the scheduled block are a subset of the
constraints of the original block.

Together, this forms a validation algorithm for list scheduling by comparing the symbolic
states of the basic blocks for equivalence, and ensuring that the constraints form a subset.
The post-pass scheduler by Six et al. optimises the validation algorithm by using hash-
consing to replace the expensive expression comparison by pointer comparisons.

2.7.3 Trace scheduling

Tristan and Leroy [2008] also formalise a version of trace scheduling, where instructions
can be moved along traces of the program that are free of back edges, and can therefore be
moved across basic block boundaries. This gives more freedom to the scheduler, leading
to more optimal code in most cases. The first part of the trace scheduling algorithm is

59

2 Background

to transform the CFG into a graph of trees representation, shown in figure 2.10a. This
representation is similar to the superblock representation shown in figure 2.4b where tail
duplication is needed to represent any internal joining control flow. However, this tail
duplication thenmeans that the whole block can be represented as a single tree. Instructions
can be reordered by the scheduler within a tree. In general, tail duplication should be
avoided as it can result in an exponential increase in the number of nodes. The boundaries
of the trees are chosen by calculating possible cut points in the CFG, which correspond to
labels that are the target of back edges, or function calls.

Validation is performed by running the symbolic execution over the tree and comparing
symbolic states in the same way as was done for list scheduling when one reaches the
leaves of the tree (i.e. the exit nodes). While traversing the tree, one must also ensure that
the same conditions are encountered and evaluated, and these have to remain in the same
order in the tree. Instructions that are moved after a control flow statement need to be
duplicated by the scheduler to remain correct.

In general, this validation technique for trace scheduling is effective at verifying complex
schedules, but it can quickly become infeasible to check the equivalence as the size of
the blocks grows. This is mainly due to two sources of inherent inefficiencies in the
validation algorithm. First, the size of the symbolic expressions can grow exponentially as
they do not share any subexpressions, which means that comparing two expressions can
take exponentially longer. This affects both the list scheduling and the trace scheduling
validator, and is addressed by Six et al. through hash-consing. Secondly, comparing two
trees symbolically can also contain an exponential number of comparisons of symbolic
states, due to expressions in different branches of the tree having to be duplicated. This
means that the choice of cut points becomes important to try and minimise the size of the
trees and still achieve a good schedule.

Superblock and extended block scheduling

Six et al. [2022] then formalise superblock scheduling as a pre-pass optimisation at the
Rtl level, which is a restricted form of trace scheduling that was specifically developed to
target VLIW processors [Hwu et al. 1993]. The idea is to translate Rtl code into Rtlpath
code, which is a superblock representation of the original code containing multiple traces
through the extended non-branching block. The superblock construction needs to take
into account which traces through the program will be executed more frequently and must
group those together. Six et al.’s scheduler then reorders instructions within a superblock

60

2.7 CompCert

trace, and also combines them where it is advantageous to do so, making it necessary to
allow for rewrites in the symbolic expressions as well.

The validator works similarly to the post-pass list scheduling algorithm in CompCert
KVX, but it is extended to support symbolic expression normalisation to verify rewrites
and expansion of instructions correct. It therefore also includes all the optimisations
from the list scheduling post-pass scheduler in CompCert KVX such as hash-consing. In
addition to that, liveness is added to the correctness theorem so that equivalence only
needs to be checked for registers that are live at this particular superblock exit. This makes
it possible to introduce new registers, and allows for instructions to be expanded into
multiple instructions, without having to reason about any intermediate registers that were
introduced.

In contrast to the list scheduling transformation, the superblock transformation requires
validation of symbolic states at each exit of the superblock with the corresponding exit in
the scheduled superblock. This is similar to the validation of graph of trees, except that
traces are still represented as lists instead of trees. Gourdin et al. [2023] later replaced
Rtlpath with block transfer language (Btl), a general intermediate block language shown
in figure 2.10b, where blocks are either: (1) a sequence of blocks, shown in the diagram as
being connected by an arrow inside of a grey box, (2) a conditional instruction containing
two blocks, shown as a node with two split arrows pointing to a block, (3) a standard
instruction, shown as a simple node in the graph, or finally (4) a control-flow instruction,
shown as a node in the graph with an edge exiting the block and pointing to a new external
block. Btl is defined as a nested structure of blocks with conditionals, and is therefore
general enough to represent hyperblocks. The main difference between the graph of trees
representation and Btl is that graph of trees cannot represent a sequence of two trees,
which is representable in Btl. As the language is not restricted to superblocks anymore, the
scheduler was modified to work with extended blocks, which are essentially equivalent to
the graph of trees representation, as they are trees without any internal joining control flow.
This makes the scheduler more flexible, making it possible to apply light loop pipelining
optimisations by scheduling an unrolled loop. However, the symbolic execution is still
performed on each trace through the program, and no sharing between tracing takes place,
meaning that the validation is exponential in the number of internal joins. Only extended
blocks are scheduled so this is avoided.

61

2 Background

2.8 Summary

This chapter described the process of high-level synthesis, as well as how verification is
normally performed when using high-level synthesis to produce hardware designs. The
main conclusion is that when using high-level synthesis one is mainly relying on testing
to check the equivalence between high-level designs and the low-level hardware design.
Further testing in then purely performed on the low-level hardware design at the register-
transfer level, where it can be difficult to verify behaviour compared to using the high-level
design.

I gave an overview of CompCert, describing the correctness theorem and describing
existing attempts at formally verifying instruction scheduling, which is the main optim-
isation and transformation that HLS tools perform to generate hardware. The current
formalised scheduling passes are mainly targeting CPUs, where it is more important to
schedule instructions over traces. HLS benefits from using general hyperblocks, espe-
cially combining blocks where control flow is joined internally, meaning it benefits from a
different intermediate representation that is more tailored to hardware.

62

Introduction to Vericert3
This chapter describes the main architecture of the HLS tool, and the way in
which the Verilog back end was added to CompCert. This chapter also covers
an example of converting a simple C program into hardware, expressed in the
Verilog language. Section 3.1 is based on a short paper coauthored with Zewei
Du, Nadesh Ramanathan, and John Wickerson [Herklotz, Du et al. 2021]. The
rest of the chapter, together with chapter 4, is based on a paper coauthored with
James D. Pollard, Nadesh Ramanathan, and John Wickerson [Herklotz, Pollard
et al. 2021].

3.1 Unreliability of High-Level Synthesis

Are HLS tools reliable? Questions have been raised about the reliability of HLS before; for
example, Andrew Canis, co-creator of the LegUp HLS tool, wrote that ‘high-level synthesis
research and development is inherently prone to introducing bugs or regressions in the
final circuit functionality’ (Canis [2015, Section 3.4.6]). In this section, I investigate whether
there is substance to this concern by conducting an empirical evaluation of the reliability
of several widely used HLS tools.

The approach used is called fuzzing. This is an automated testing method in which
randomly generated programs are given to compilers to test their robustness [Chen et al.
2013; Liang et al. 2018; Lidbury et al. 2015; Sun et al. 2016; Yang et al. 2011; Zhang et al.
2019]. The generated programs are typically large and rather complex, and they often
combine language features in ways that are legal but counter-intuitive; hence they can
be effective at exercising corner cases missed by human-designed test suites. Fuzzing has
been used extensively to test conventional compilers; for example, Yang et al. [2011] used
it to reveal more than three hundred bugs in GCC and LLVM, and tested CompCert as well,
only finding bugs in the trusted parts of the code.

63

3 Introduction to Vericert

unsigned int x = 0x1194D7FF;

int arr[6] = {1, 1, 1, 1, 1, 1};

int main() {

for (int i = 0; i < 2; i++)

x = x >> arr[i];

return x;

}

Figure 3.1: Miscompilation bug in Xilinx Vivado HLS. The generated hardware returns
0x006535FF but the correct result is 0x046535FF.

Example 3.1 (A miscompilation bug in Vivado HLS). Figure 3.1 shows a program that
produces the wrong result during hardware simulation in Xilinx Vivado HLS v2018.3,
v2019.1 and v2019.2.1 The program repeatedly shifts a large integer value x right by the
values stored in array arr. Vivado HLS returns 0x006535FF, but the result returned by GCC
(and subsequently confirmed manually to be the correct one) is 0x046535FF. The bug was
initially revealed by a randomly generated program of around 113 lines, which was reduced
to the minimal example shown in the figure. I reported this issue to Xilinx, who confirmed
it to be a bug.2

The fuzzer used Csmith to randomly generate C code and modified it to make it suitable
for HLS tools. For example, pointers had to be removed because some cases, like pointers
of other pointers, are explicitly not supported by Vivado HLS. I tested the following HLS
tools: Intel i++ 18.1, LegUp 4.0, Bambu 0.9.7 and Xilinx Vivado HLS v2018.3, v2019.1 and
v2019.2. Figure 3.2 shows an Euler diagram of our results. We see that 918 (13.7%), 167
(2.5%), 83 (1.2%) and 26 (0.4%) test-cases fail in Bambu, LegUp, Vivado HLS and Intel i++
respectively. The bugs I reported to the Bambu developers were fixed during our testing
campaign, so I also tested the development branch of Bambu (0.9.7-dev) with the bug fixes,
and found only 17 (0.25%) failing test-cases remained. Although i++ has a low failure rate,
it has the highest time-out rate (540 test-cases) due to its remarkably long compilation
time. No other tool had more than 20 time-outs. Note that the absolute numbers here
do not necessarily correspond to the number of bugs in the tools, because a single bug
in a language feature that appears frequently in our test suite could cause many failures.

1This program, like all the others in this paper, includes a main function, which means that it compiles
straightforwardly with GCC. To compile it with an HLS tool, I rename main to result, synthesise that
function, and then add a new main function as a testbench that calls result.

2https://web.archive.org/web/20210419185153/https://forums.xilinx.com/t5/High-Level-Synthesis-

HLS/Issue-with-shift-in-for-loop/m-p/1170197

64

https://web.archive.org/web/20210419185153/https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Issue-with-shift-in-for-loop/m-p/1170197
https://web.archive.org/web/20210419185153/https://forums.xilinx.com/t5/High-Level-Synthesis-HLS/Issue-with-shift-in-for-loop/m-p/1170197

3.2 Main Design Decisions of Vericert

Xilinx Vivado HLS v2019.1Intel i++ 18.1

LegUp 4.0 Bambu 0.9.7

Bambu
0.9.7-dev

159

26

1 4

3 902

9

70

4 13

5509

Figure 3.2: The number of failures per tool out of 6700 test-cases. Overlapping regions
mean that the same test-cases failed in multiple tools.

Moreover, I am reluctant to draw conclusions about the relative reliability of each tool by
comparing the number of failures, because these numbers are so sensitive to the parameters
of the randomly generated test suite used. In other words, I can confirm the presence of
bugs, but cannot deduce the number of them (nor their importance).

In total, I found at least 8 unique bugs across all the tools, including both crashes and
miscompilations. Conventional compilers have become quite resilient to fuzzing over
the last decade, so recent work on fuzzing compilers has had to employ increasingly
imaginative techniques to keep finding new bugs [Even-Mendoza et al. 2020]. In contrast,
I have found that HLS tools can be made to exhibit bugs even using the relatively basic
fuzzing techniques. This motivates the need for a verified HLS tool.

3.2 Main Design Decisions of Vericert

Our solution to the reliability problem in HLS is Vericert, a formally verified HLS tool.
First, I will describe the main design decisions behind Vericert in section 3.2 and I will then
give an example of a translation from C code into Verilog through Vericert in section 3.3.

Choice of source language C was chosen as the source language as it remains the most
common source language amongst production-quality HLS tools [AMD 2023b; Andrew
Canis et al. 2013; Intel 2020a; Pilato and Ferrandi 2013]. This, in turn, may be because it is
‘[t]he starting point for the vast majority of algorithms to be implemented in hardware’
(Gajski et al. [2010]), lending a degree of practicality. The availability of CompCert [Leroy

65

3 Introduction to Vericert

2009b] also provides a solid basis for formally verified C compilation. Since a lot of ex-
isting code for HLS is written in C, supporting C as an input language, rather than a
custom domain-specific language, means that Vericert is more practical. I considered
Bluespec [Nikhil 2004], but decided that although it ‘can be classed as a high-level lan-
guage’ (Greaves [2019]), it is too hardware-oriented to be suitable for traditional HLS. I
also considered using a language with built-in parallel constructs that map well to par-
allel hardware, such as occam [Page and Luk 1991], Spatial [Koeplinger et al. 2018] or
Scala [Bachrach et al. 2012].

Choice of target language Verilog was chosen as the output language for Vericert
because it is one of the most popular HDLs and there already exist a few formal semantics
for it that could be used as a target [Lööw et al. 2019; Meredith et al. 2010]. Bluespec,
previously ruled out as a source language, is another possible target and there exists a
formally verified translation to circuits of variants of Bluespec using Kôika [Bourgeat et al.
2020] or Fe-Si [Braibant and Chlipala 2013]. However, Bluespec is mainly targeted at being
a source language for hardware design and would present similar challenges to targeting a
language like Verilog from a software language.

Choice of implementation language I chose Coq as the implementation language
because of its mature support for code extraction; that is, its ability to generate OCaml
programs directly from the definitions used in the theorems. CompCert [Leroy 2009b] was
chosen as the front end because it has a well established framework for simulation proofs
about intermediate languages, and it already provides a validated C parser [Jourdan et al.
2012]. The Vellvm framework [Jianzhou Zhao et al. 2012] was also considered because
several existing HLS tools are already LLVM-based, but additional work would be required
to support a high-level language like C as input. The .NET framework has been used as a
basis for other HLS tools, such as Kiwi [Greaves and Singh 2008], and LLHD [Schuiki et al.
2020] has been recently proposed as an intermediate language for hardware design, but
neither are suitable for us because they lack formal semantics.

Architecture of Vericert An overview of Vericert’s workflow is given in figure 3.3, which
shows that Vericert branches off from CompCert at the Rtl stage, followed by a number of
transformations related to the scheduling instructions, and finally transformations that
generate the final hardware.

66

3.2 Main Design Decisions of Vericert

CompCert C · · ·

Rtl · · ·

optimisations

Back End

Native Code

Front End

find
basic blocks RtlBlock schedule

if-conversion

RtlPar

hyperblock
destruction RtlSubPar

Htl
generation Htl

BRAM
insertion

Htl
forward

substitutionHtl
verilog

generationVerilog

H
ar
dw

ar
e
G
en
er
at
io
n

C
ha

pt
er

6
H
yp

er
bl
oc
k
Sc
he

du
lin

g
C
ha

pt
er

5

C
om

pC
er
t

1

2

3

4 5 6

78

Figure 3.3: Vericert as a Verilog back end to CompCert.

67

3 Introduction to Vericert

CompCert’s Rtl was selected as the starting point. Branching off before this point (at
CminorSel or earlier) denies CompCert the opportunity to perform optimisations such
as constant propagation and dead-code elimination, which, despite being designed for
software compilers, have been found useful in HLS tools as well [Cong et al. 2011]. And
if we branch off after this point (at Ltl or later) then CompCert has already performed
register allocation to reduce the number of registers and spill some variables to the stack;
this transformation is not required in HLS because there are many more registers available,
and these should be used instead of BRAM whenever possible.

Rtl is also attractive because it is the closest intermediate language to LLVM IR, which
is used by several existing HLS compilers. It has an unlimited number of pseudo-registers,
and is represented as a CFG where each instruction is a node with links to the instructions
that can follow it. Rtl does not have the SSA property, however, this is not required for
the translation to hardware and mainly assists the static analysis passes. One difference
between LLVM IR and Rtl is that Rtl includes operations that are specific to the chosen
target architecture; I chose to target the x86_32 back end because it generally produces
relatively dense Rtl thanks to the availability of complex addressing modes. The translation
from Rtl is then performed as follows:

1 Basic block generation creates basic blocks from the pure Rtl CFG.

2 If-conversion combines basic blocks into a single hyperblock based on heuristics
on the CFG layout. The hyperblock is represented as a basic block of predicated
instructions with an exit instruction to leave the basic block prematurely.

3 The scheduler itself is written in unverified OCaml, and works similarly to those
in existing HLS tools [Andrew Canis et al. 2013]: it takes a set of scheduling con-
straints that capture the clock period, available hardware resources, and dependencies
between operations, encodes them as a system of difference constraints (SDC) [Cong
and Zhang 2006], and then hands them off to a linear program solver.

4 Next, the hyperblocks are destroyed to explicitly place instructions into individual
states.

5 Htl is generated, which is a language that models an FSMD, which is used as an
intermediate language that is simpler to manipulate than Verilog but is still close
enough to a hardware description so that hardware-specific optimisations can be
performed on it.

68

3.3 Translating C to Verilog by Example

6 BRAM insertion generates a proper memory interface for any interaction with the
stack.

7 To ensure that these assignments are actually performed in parallel, a final pass
performs forward substitution [Hopwood 1978, p. 109] to turn the sequence of Verilog
blocking assignments into a sequence of nonblocking assignments. For example:

a = b * c;

d = a + d;

a <= b * c;

d <= (b * c) + d;

forward

substitution

The two versions are semantically equivalent, but the second, in which both right-
hand sides must be evaluated before either assignment is performed, makes the
downstream logic synthesis tools more likely to produce the intended hardware
(which, in this particular example, involves exploiting a fused multiply–accumulator
unit if available).

8 Finally, syntactic Verilog is generated from Htl, which consists of translating the
FSMD into a case statement and implementing the memory interface in Verilog.

3.3 Translating C to Verilog by Example

Figure 3.4 illustrates the translation of a simple program that stores and retrieves a value
from an array. This section describes the stages of the Vericert translation, referring to this
program as an example.

3.3.1 Translating C to Rtl

The first stage of the translation uses unmodified CompCert to transform the C input,
shown in figure 3.4a, into an Rtl intermediate representation, shown in figure 3.4b. As
part of this translation, function inlining is performed on all functions, which allows us to
support function calls without having to support the Icall Rtl instruction. Although the
duplication of the function bodies caused by inlining can increase the area of the hardware, it
can have a positive effect on latency and is therefore a common HLS optimisation [Noronha
et al. 2017]. Scheduling in particular benefits from inlining of function calls so that the
instructions can be scheduled together and larger hyperblocks can be formed. Inlining
precludes support for recursive function calls, but this feature is not supported in most
HLS tools anyway [Thomas 2016].

69

3 Introduction to Vericert

1 int main() {

2 int x[2] = {3, 6};

3 int i = 1;

4 return x[i];

5 }

(a) Example C code passed to Vericert.

1 main() {

2 9: r5 = 3

3 8: int32[Stack (0)] = r5

4 7: r4 = 6

5 6: int32[Stack (4)] = r4

6 5: r1 = 1

7 4: r3 = Stack (0) (int)

8 3: r2 = int32[r3 + r1 * 4 + 0]

9 goto 1

10 2: r2 = 0

11 1: return r2

12 }

(b) Rtl produced by the CompCert front end
without any optimisations.

Figure 3.4: Translating a simple program from C to Rtl.

3.3.2 Scheduling Rtl instructions

The first step in the translation performed by Vericert is to schedule the instructions
according to the resource constraints imposed by the hardware target. An example of such
a constraint is that two memory operations cannot be performed in the same cycle. The
goal is to schedule as many instructions as possible together to give the scheduler the
most flexibility. Vericert therefore constructs hyperblocks from the Rtl CFG, by building
basic blocks first and then performing if-conversion on blocks that should be merged. This
is shown in figure 3.5a, where all the instructions can fit into a single basic block. Each
hyperblock can then be scheduled individually using SDC scheduling by specifying any
necessary constraints, the result of which is shown in figure 3.5b, where one can see that
instructions with dependencies have been separated into different states and instructions
that can execute in parallel are placed into the same state. Each memory operation is
placed into its own state. The instructions are placed into additional bundles, designated
by parentheses, which could contain additional operations that are chained sequentially
within one clock cycle.

The SDC scheduling algorithm itself is unverified but a verified validator checks the
resulting schedule against the unscheduled program. This makes it possible to change
heuristics in the scheduler without it affecting the proof. The scheduled program language
is called RtlPar and specifies in which cycle each instruction will be executed. RtlPar
however still contains the coarse-grained structure of hyperblocks, so this structure is
destroyed to produce RtlSubPar, shown in figure 3.5b. The representation is still hardware

70

3.3 Translating C to Verilog by Example

1 main() {

2 8: {

3 r5 = 3

4 int32[Stack (0)] = r5

5 r4 = 6

6 int32[Stack (4)] = r4

7 r1 = 1

8 r3 = Stack (0) (int)

9 r2 = int32[r3 + r1 * 4 + 0]

10 nop

11 return r2

12 }

13 }

(a) Code in RtlBlock after basic blocks have
been generated.

1 main() {

2 8: {

3 (r5 = 3)

4 (r4 = 6)

5 (r1 = 1)

6 (r3 = Stack (0) (int))

7 }

8 14: {(int32[Stack (0)] = r5)}

9 15: {(int32[Stack (4)] = r4)}

10 16: {(r2 = int32[r3 + r1*4 + 0])}

11 17: {(return r2)}

12 }

(b) RtlSubPar code produced after scheduling
and hyperblock destruction.

Figure 3.5: Scheduling a simple program from RtlBlock to RtlPar.

agnostic even if the current implementation of the scheduler is specific to an FPGA target,
and therefore supports all Rtl instructions. Details about the scheduler and proof of
correctness are given in chapter 5. This representation is then ready to be translated into
hardware.

3.3.3 Translating RtlPar to Htl

The next translation is from RtlPar, the program formed of scheduled hyperblocks, to
an intermediate hardware translation language (Htl). This translation involves going
from a CFG representation of the computation to an FSMD representation [Hwang et
al. 1999]. An FSMD is a generalised state machine where the state is supplemented by
registers and memory that can store results of computations. Figure 3.6 shows the resulting
FSMD architecture for the running example. The right-hand block is the control logic that
computes the next state, while the left-hand block updates all the registers and BRAM based
on the current program state. However, in general the state machine cannot be separated
from the data path completely, because state updates may depend on computations in the
data path and on the value of registers. Hence, an Htl program consists of a map from
states to Verilog statements, which describe updates done to both the state register as well
as other registers and interact with memory.

The Htl language was mainly introduced to simplify the proof of translation from Rtl
to Verilog, as these languages have very different semantics. It serves as an intermediate

71

3 Introduction to Vericert

Data Path Control Logic

Next State FSM

8 14 15 16 18 17

current state

cl
k

re
se
t

Update
BRAM

state

fi
ni
sh
ed

re
tu
rn
_v
al

cl
k

re
se
t

u_en

wr_en

addr

d_in

d_out

u_en

wr_en

addr

d_in

d_out

0
1

Registers

reg_2

reg_4

reg_6

reg_8

reg_10

Figure 3.6: The FSMD for the example shown in figure 3.4, split into a data path and
control logic for the next state calculation. The update block takes the current state,
current values of all registers and at most one value stored in the BRAM, and calculates
new values that can either be stored back in the BRAM, in the registers, or can be the
next state for the state machine.

language with similar semantics to Rtl at the top level, using maps to represent what to
execute at every state, and similar semantics to Verilog at the lower level because it already
uses Verilog statements instead of more abstract instructions to perform computations.
The next state is also computed explicitly in each state by modifying the state register.
Compared to plain Verilog and due to using maps to represent the Verilog statement that
should execute at every state, Htl is simpler to manipulate and analyse, thereby making it
easier to prove optimisations like BRAM insertion.

Translating memory Typically, HLS-generated hardware consists of a sea of registers
and RAMs. This memory view is very different from the C memory model, so I perform
the following translation from CompCert’s abstract memory model to a concrete BRAM.
Variables that do not have their address taken are kept in registers, which correspond to
the registers in Rtl. All address-taken variables, arrays, and structs are kept in BRAM.
The stack of the main function becomes an unpacked array of 32-bit integers representing
the BRAM block. Any loads and stores are temporarily translated to direct accesses to
this array, where each address has its offset removed and is divided by four. In a separate
Htl-to-Htl conversion, these direct accesses are then translated to proper loads and stores
that use an interface to communicate with the BRAM, shown on lines 31–32, 35–36 and

72

3.3 Translating C to Verilog by Example

1 module main(reset, clk, finish, return_val);

2 output logic [31:0] return_val = 0;

3 output logic [0:0] finish = 0;

4 input [0:0] clk, reset;

5 logic [31:0] reg_8 = 0, reg_4 = 0, d_in = 0, reg_2 = 0, addr = 0;

6 logic [31:0] reg_10 = 0, reg_6 = 0, wr_en = 0, d_out = 0, en = 0;

7 logic [31:0] u_en = 0;

8 logic [31:0] state = 0;

9

10 // BRAM interface

11 (* ram_style = "block" *)

12 logic [31:0] stack [1:0];

13 always @(negedge clk)

14 if ({u_en != en}) begin

15 if (wr_en) stack[addr] <= d_in;

16 else d_out <= stack[addr];

17 en <= u_en;

18 end

19

20 // Finite-state machine with data path implementation

21 always @(posedge clk)

22 if ({reset == 32'd1}) state <= 32'd8;

23 else

24 case (state)

25 32'd18: begin state <= 32'd17; reg_4 <= d_out; end

26 32'd17: begin

27 finish <= 32'd1; return_val <= reg_4;

28 state <= 32'd17; state <= (32'd0 ? 32'd18 : 32'd17);

29 end

30 32'd16: begin

31 state <= 32'd18; u_en <= (~ u_en); wr_en <= 32'd0;

32 addr <= {{{reg_6 + 32'd0} + {reg_2 * 32'd4}} / 32'd4};

33 end

34 32'd15: begin

35 state <= 32'd16; u_en <= (~ u_en); wr_en <= 32'd1;

36 d_in <= reg_8; addr <= 32'd1;

37 end

38 32'd14: begin

39 state <= 32'd15; u_en <= (~ u_en); wr_en <= 32'd1;

40 d_in <= reg_10; addr <= 32'd0;

41 end

42 32'd8: begin

43 reg_10 <= 32'd3; reg_8 <= 32'd6; reg_2 <= 32'd1;

44 reg_6 <= 32'd0; state <= 32'd14;

45 end

46 default:;

47 endcase

48 endmodule

Figure 3.7: Verilog implementation of Rtl code produced by CompCert produced by
scheduling the code, instantiating a BRAM and translating to Verilog.

73

3 Introduction to Vericert

39–40 of figure 3.7 in the final Verilog design. This pass inserts a BRAM block with an
interface defined around the unpacked array. Without this interface and without the BRAM
block, the synthesis tool processing the Verilog hardware description would not identify
the array as a BRAM, and would instead implement it using many registers. A high-level
overview of the architecture and of the BRAM interface can be seen in figure 3.6, where
loads are specified to take two cycles and stores take one cycle.

Translating instructions Most Rtl instructions correspond to hardware constructs.
For example, line 2 which in figure 3.4b shows a 32-bit register r5 being initialised to 3, after
which the control flow moves execution to line 3. This initialisation is also encoded in the
Verilog generated from Htl at state 8 in the always-block implementing the FSMD, shown
at line 43 in figure 3.7 with the assignment reg_10 <= 32'd3. Simple operator instructions
are translated in a similar way. For example, the add instruction is just translated to the
built-in add operator, similarly for the multiply operator. All 32-bit instructions can be
translated in this way, but some special instructions require extra care. One such instruction
is the Oshrximm instruction, which has no Verilog equivalent and is discussed further in
section 6.2.2. Another is the Oshldimm instruction, which is a left rotate instruction that has
no Verilog equivalent and therefore has to be implemented in terms of other operations
and proven to be equivalent. The only 32-bit instructions that are not translated are case-
statements (Ijumptable) and those instructions related to function calls (Icall, Ibuiltin,
and Itailcall), because inlining is enabled by default.

3.3.4 Translating Htl to Verilog

Finally, we have to translate the Htl code into proper Verilog. The challenge here is to
translate our FSMD representation into a Verilog AST. However, as all the instructions in
Htl are already expressed as Verilog statements, only the top-level data path map needs
to be translated to valid Verilog case-statements. We also require declarations for all the
variables in the program, as well as declarations of the inputs and outputs to the module, so
that the module can be used inside a larger hardware design. In addition to translating the
maps of Verilog statements, an always-block implementation the BRAM interface also has
to be created, which is only modelled abstractly at the Htl level. Figure 3.7 shows the final
Verilog output that is generated for our example. The BRAM interface implementation is
shown on lines 10–18 in the Verilog code.

Although this translation seems quite straightforward, proving that this translation

74

3.3 Translating C to Verilog by Example

is correct is complex. All the implicit assumptions that were made in Htl need to be
translated explicitly to Verilog statements and it needs to be shown that these explicit
behaviours are equivalent to the assumptions made in the Htl semantics. One main
example of this is proving that the specification of the BRAM in Htl does indeed behave in
the same way as its Verilog implementation. I discuss these proofs in upcoming sections.

75

Trusted Computing Base4
This chapter describes the trusted computing base of Vericert, which includes the
final correctness theorem and the formalised Verilog semantics.

The trusted computing base of verified software such as CompCert is the code that is
not verified, and therefore needs to be trusted by the user when using the tool or the
correctness theorem. This is in contrast to the untrusted code that has been verified, and
therefore cannot introduce bugs. It is important to understand the trusted computing base
of verified software such as CompCert and Vericert to recognise where bugs could still be
introduced. When Yang et al. [2011] fuzz tested CompCert and all bugs that were found
were in the unverified, trusted parts of the compiler. For example, there were bugs in
the unverified front end of CompCert, which was then addressed by reducing the trusted
computing base by verifying the correctness of the C parser [Jourdan et al. 2012]. Another
bug was found because of a missing constraint in the semantics of the PowerPC.

The trusted computing base of CompCert comprises the Coq theorem prover itself,
the OCaml extraction from Coq which is unverified, the front end semantics of C which
may not model the C standard faithfully, and finally the semantics for each assembly
language [Monniaux and Boulmé 2022]. In general, the trusted computing base of Vericert
is the same as that of CompCert, the main two differences are described in this section,
and they are the correctness theorem and the target Verilog semantics.

4.1 Formulating the Correctness Theorem

The main correctness theorem is analogous to that stated in CompCert and described in
section 2.7.1: for all Clight source programs � , if the translation to the target Verilog code
succeeds, safe(�) holds and the target Verilog has behaviour B when simulated, then� will
have the same behaviour B. The predicate safe(�) means all observable behaviours of �

77

4 Trusted Computing Base

are safe, which can be defined as ∀B, � ⇓ B =⇒ B ∉ Wrong. A behaviour is in Wrong if it
can ‘go wrong’, meaning it contains undefined behaviour. In CompCert, a behaviour is also
associated with a trace of I/O events, but since external function calls are not supported in
Vericert, this trace will always be empty.

Theorem 4.1. Whenever the translation from � succeeds and produces Verilog +, and all
observable behaviours of � are safe, then + has behaviour B only if � has behaviour B.

∀� + B . HLS(�) = b+ c ∧ safe(�) =⇒ (+ ⇓ B =⇒ � ⇓ B) .

Why is this correctness theorem also the right one for HLS? It could be argued that
hardware inherently runs forever and therefore does not produce a definitive final result.
This would mean that the CompCert correctness theorem would probably be unhelpful
with proving hardware correctness, as the behaviour would always be divergent. However,
in practice, HLS does not normally produce the top-level of the design that connects all
the components of the design together, therefore needing to run forever. Rather, HLS
often produces smaller components that take an input, execute, and then terminate with
an answer. To start the execution of the hardware and to signal to the HLS component
that the inputs are ready, the rst signal is set and unset. Then, once the result is ready,
the fin signal is set and the result value is placed in ret. This is encoded in the Verilog
semantics. The correctness theorem therefore also uses these signals, and the proof shows
that once the fin flag is set, the value in ret is correct according to the semantics of Verilog
and CompCert C. Note that the compiler is allowed to fail and not produce any output; the
correctness theorem only applies when the translation succeeds.

How can we prove this theorem? Note that like in CompCert, this theorem can be
proven using a backward simulation. The same proof technique can be used to verify the
correctness of Vericert, extending the forward simulation from Rtl to Verilog. Then, by
proving that the Verilog semantics are deterministic, the composition of forward simulation
in CompCert, as well as the simulations in Vericert imply the backward simulation needed
to prove the theorem. For each transformation this dissertation will therefore describe
how the forward simulations are proven.

All the corollaries proven using the top-level CompCert correctness theorem still hold,
and do not have to be proven again or modified, because the correctness theorem is
unchanged except for the target language semantics. Note however that Vericert does
not support separate compilation of translation units, and needs a main function. Any

78

4.2 A Formal Semantics for Verilog

corollaries and top-level theorems about the linking of translation units therefore are not
needed and hold vacuously, as compilation would fail on these translation units.

4.2 A Formal Semantics for Verilog

This section describes the Verilog semantics that was chosen for the target language,
including the changes that were made to the semantics to make it a suitable HLS target.
The Verilog standard is quite large [IEEE 2006, 2005], and is split into two standards, one
for synthesis and one for simulation. The simulation semantics are similar to semantics one
would expect, assigning detailed behaviour to each part of the Verilog language. However,
in contrast to programming languages, ‘HDLs are better understood as a shorthand for
describing digital hardware’ (Weste and Harris [2010, p. 699]), as synthesis tools try to
understand what kind of hardware the user wanted to describe, which may sometimes
behave differently to simulating the original Verilog design. It is therefore important
to take that into account in the Verilog semantics and ensure that after synthesis the
design still behaves according to the semantics. Luckily, the syntax and semantics can be
reduced to a small subset that Vericert can target. This section also describes how Vericert’s
representation of memory differs from CompCert’s memory model.

The Verilog semantics I use is ported to Coq from a semantics written in HOL4 by Lööw
and Myreen [2019] which was used to prove the translation from a HOL4 description
of the hardware to Verilog [Lööw et al. 2019]. This semantics is quite practical as it
is restricted to a small subset of Verilog, which can nonetheless be used to model the
hardware constructs required for HLS. The main features that are excluded are continuous
assignment and combinational always-blocks; these are modelled in other semantics such
as that by Meredith et al. [2010].

The semantics of Verilog differs from regular programming languages, as it is used to
describe hardware directly, which is inherently parallel, rather than an algorithm, which
is usually sequential. The main construct in Verilog is the always-block. A module can
contain multiple always-blocks, all of which run in parallel. These always-blocks further
contain statements such as if-statements or assignments to variables. Only synchronous
logic is supported, which means that the always-block is triggered on (and only on) the
positive or negative edge of a clock signal. However, combinational expressions can still
be expressed within synchronous assignments, so in practice these features are not needed
if the Verilog is being generated.

79

4 Trusted Computing Base

The semantics combines the big-step and small-step styles. The overall execution of the
hardware is described using a small-step semantics, with one small step per clock cycle;
this is appropriate because hardware is routinely designed to run for an unlimited number
of clock cycles and the big-step style is ill-suited to describing infinite executions. Then,
within each clock cycle, a big-step semantics is used to execute all the statements. An
example of a rule for executing an always-block that is triggered at the positive edge of
the clock is shown below, where Σ is the state of the registers in the module and B is the
statement inside the always-block:

Always
(Σ, B) ↓stmnt Σ

′

(Σ, always @(posedge clk) B) ↓always+ Σ
′

This rule says that assuming the statement B in the always-block runs with state Σ and
produces the new state Σ′, the always-block will result in the same final state. The rule is
triggered once for every clock cycle.

Two types of assignments are supported in always-blocks: nonblocking and blocking
assignment. Nonblocking assignments all take effect simultaneously at the end of the
clock cycle, while blocking assignments happen instantly so that later assignments in
the clock cycle can pick them up. This means that sequential logic is usually expressed
using nonblocking assignments, which will often write the assignment to a register that
can be read in the next cycle, whereas blocking assignment is used for combinational
expressions within the cycle and could therefore be thought of as a wire instead. When
writing Verilog, this is only a guideline, and in practice the tools may create registers
for blocking assignments if the synthesis tool sees that they are used to store state. To
mitigate this, the formal semantics specify that communication between always blocks
can only happen through nonblocking assigment, and blocking assignment can only be
used for local variables, so that these likely will result in wires in the final hardware. These
two restrictions do not only help produce more predictable hardware that behaves like
the simulation, but it also simplifies the overall semantics of Verilog. As only clocked
always-blocks are supported, communication between these always-blocks can only be
performed through nonblocking assignment, which means that the order in which the
always blocks are executed does not matter and will always result in the same final state.

To model both of these assignments, the state Σ has to be split into two association maps:
Γ, which contains the current values of all variables and arrays, and Δ, which contains the

80

4.2 A Formal Semantics for Verilog

values that will be assigned at the end of the clock cycle. Σ can therefore be defined as
follows: Σ = (Γ,Δ). Blocking and Nonblocking assignment can therefore be expressed as
follows:

Blocking Reg
name 3 = b=c (Γ, 4) ↓expr E

((Γ,Δ), 3 = 4;) ↓stmnt (Γ [= ↦→ E],Δ)

Nonblocking Reg
name 3 = b=c (Γ, 4) ↓expr E

((Γ,Δ), 3 <= 4;) ↓stmnt (Γ,Δ[= ↦→ E])

where assuming that ↓expr evaluates an expression 4 to a value E , the nonblocking assign-
ment 3 <= 4 updates the future state of the variable 3 with value E .

Finally, the following rules dictate how the whole module runs in one clock cycle:

Module+1
(Γ,Δ, 0) ↓always+ (Γ′,Δ′) (Γ′,Δ′, ®<) ↓module+ (Γ′′,Δ′′)

(Γ,Δ, 0 :: ®<) ↓module+ (Γ′′,Δ′′)

Module+2

(Γ,Δ,∅) ↓module+ (Γ,Δ)

Program
(Γ, n, ®<) ↓module+ (Γ′,Δ′)

(Γ, module main(...); ®< endmodule) ↓program (Γ′ // Δ′)

where Γ is the initial state of all the variables, n is the empty map because the Δ map is
assumed to be empty at the start of the clock cycle, and ®< is a list of variable declarations
and always-blocks that ↓module+ evaluates sequentially to obtain (Γ′,Δ′). The final state is
obtained by merging these maps using the // operator, which gives priority to the right-
hand operand in a conflict. This rule ensures that the nonblocking assignments overwrite
at the end of the clock cycle any blocking assignments made during the cycle.

4.2.1 Changes to the semantics

Five changes were made to the semantics proposed by Lööw and Myreen [2019] to make it
suitable as an HLS target.

Adding array support The main change is the addition of support for arrays, which
are needed to model BRAM in Verilog. BRAM is needed to model the stack in C efficiently,
without having to declare a variable for each possible stack location. In the original
semantics, RAMs (as well as inputs and outputs to the module) could be modelled using a
function from variable names to values, which could be modified accordingly to model

81

4 Trusted Computing Base

inputs to the module. However, this representation does not support merging of individual
array elements. This is quite an abstract description of memory and can also be expressed as
an array instead, which is the path I took. This requires the addition of array operators to the
semantics and correct reasoning of loads and stores to the array in different always-blocks
simultaneously. Consider the following Verilog code:

1 logic [31:0] x[1:0];

2 always @(posedge clk) begin

3 x[0] = 1;

4 x[1] <= 1;

5 end

This always-block modifies one array element using blocking assignment and then a second
using nonblocking assignment. If the existing semantics were used to update the array,
then during the merge, the entire array x from the nonblocking association map would
replace the entire array from the blocking association map. This would replace x[0]with its
original value and therefore behave incorrectly. Accordingly, I modified the maps so they
record updates on a per-element basis. Our state Γ is therefore further split up into ΓA for
instantaneous updates to variables, and Γ0 for instantaneous updates to arrays (Γ = (ΓA , Γ0));
Δ is split similarly (Δ = (ΔA ,Δ0)). The merge function then ensures that only the modified
indices get updated when Γ0 is merged with the nonblocking map equivalent Δ0 .

The implementation of arrays is done using dependently typed arrays that keep track
of their size, such that out-of-bounds accesses can be detected and handled appropriately.
Section 4.2.3 describes the implementation of this memory model in more detail, comparing
it to the CompCert memory model.

Adding negative edge support To reason about circuits that execute on the negative
edge of the clock (such as our BRAM interface described briefly in section 3.3.3), support
for negative-edge-triggered always-blocks was added to the semantics. This is shown in
the modifications of the Program± rule shown below:

Program±

(Γ, n, ®<) ↓module+ (Γ′,Δ′) (Γ′ // Δ′, n, ®<) ↓module− (Γ′′,Δ′′)

(Γ, module main(...); ®< endmodule) ↓program± (Γ′′ // Δ′′)

The main execution of the module ↓module is split into ↓module+ and ↓module− , which are
rules that only execute always-blocks triggered at the positive and at the negative edge

82

4.2 A Formal Semantics for Verilog

respectively. The positive-edge-triggered always-blocks are processed in the same way as
in the original Program rule. The output maps Γ′ and Δ′ are then merged and passed as
the blocking assignments map into the negative edge execution, so that all the blocking
and nonblocking assignments are resolved. Finally, all the negative-edge-triggered always-
blocks are processed and merged to give the final state.

Adding declarations Explicit support for declaring inputs, outputs and internal vari-
ables was added to the semantics to make sure that the generated Verilog also contains
the correct declarations. This adds some guarantees to the generated Verilog and ensures
that it synthesises and simulates correctly. Otherwise, if there are bugs in the insertion
of declarations, the Verilog would fail to synthesise or simulate. This is done by adding a
declaration entry for each register that is used.

Removing support for external inputs to modules Support for receiving external
inputs was removed from the semantics. The main module in Verilog models the main
function in C, and since the inputs to a C function should not change during its execution,
there is no need for external inputs for Verilog modules. In addition to that, this external
inputs function was also used to model memory in the original semantics, which is not
needed as arrays are fully supported. This means that the BRAM can be faithfully modelled
as Verilog and it can be reasoned about.

Simplifying representation of bitvectors Finally, I use 32-bit integers to represent
bitvectors rather than arrays of booleans. This is because Vericert (currently) only supports
types represented by 32 bits. However, extending Vericert would likely not require the
full flexibility of bitvectors as arrays of booleans either, as long as fine-grained bit-size
optimisations for registers are not introduced, because the Verilog subset could be restriced
to bitvectors of sizes 4, 8, 16, 32 and 64, which are already supported by the CompCert
integer type.

4.2.2 Integrating the Verilog semantics into CompCert’s model

The CompCert computation model defines a set of states through which execution passes.
In this subsection, I explain how I extend our Verilog semantics with four special-purpose
registers in order to integrate it into CompCert.

83

4 Trusted Computing Base

Step
ΓA [rst] = 0 ΓA [fin] = 0 (<, (ΓA , Γ0)) ↓program± (Γ′A , Γ′0)

State sf < ΓA [st] ΓA Γ0 −→ State sf < Γ′A [st] Γ′A Γ
′
0

Finish
ΓA [fin] = 1

State sf < = ΓA Γ0 −→ Returnstate sf ΓA [ret]

Call

Callstate sf < ®A −→ State sf < = ((init_params ®A 0) [st ↦→ =, fin ↦→ 0, rst ↦→ 0]) n

Return

Returnstate (Stackframe A < pc ΓA Γ0 :: sf) E −→ State sf < pc (ΓA [st ↦→ pc, A ↦→ E]) Γ0

Figure 4.1: Top-level small-step semantics for Verilog modules in CompCert’s computa-
tional framework.

CompCert executions pass through three main states, which have been adapted to the
Verilog semantics by using association maps for the registers and arrays. These three states
otherwise match the states used by other languages, simplifying the integration of the
Verilog semantics into CompCert. These states, together with the transitions defined on
the states, act as a weak calling convention for the hardware produced by the HLS tool.
These are therefore not part of the general Verilog semantics themselves, but part of the
Verilog semantics for designs produced through HLS.

State sf < E ΓA Γ0 The main state when executing a function, with stack frame sf , current
module<, current state E and variable states ΓA and Γ0 . The regular execution of the
module will proceed from State to State until the fin signal is high.

Callstate sf < ®A The state that is reached when a function is called, with the current
stack frame sf , current module < and arguments ®A . In practice, as there are no
function calls in the Verilog semantics, this state is only reached at the start of the
main function. A better name for this state might therefore be Resetstate, as it
corresponds to the behaviour of the module when the reset input was asserted.

Returnstate sf E The state that is reached when a function returns back to the caller, with
stack frame sf and return value E .

84

4.2 A Formal Semantics for Verilog

To support this computational model, I extend the Verilog module I generate with the
following four registers and a BRAM block:

program counter The program counter is modelled using a register that keeps track of
the state, named st. This register should always contain the current state, and will
be checked on the next transition to pick the next state.

function entry point When a function is called, the entry point denotes the first instruc-
tion that will be executed. This can be modelled using a reset signal that sets the state
accordingly, denoted as rst. In this translation, function calls are not implemented,
so the reset signal resets the main module and sets the state parameter for this main
module.

return value The return value can be modelled by setting a finished flag to 1 when the
result is ready, and putting the result into a 32-bit output register. These are denoted
as fin and ret respectively. Instead of a return instruction, checking that fin is 1
should signal that the result is stored in the return register.

stack The function stack can be modelled as a BRAM block, which is implemented using
an array in the module, and denoted as stk. When the main function is initially called,
it allocates the stack, which should match the BRAM block that was implemented.

Figure 4.1 shows the inference rules for moving between the computational states. The
first, Step, is the normal rule of execution. It defines one step in the State state, assuming
that the module is not being reset, that the finish state has not been reached yet, that the
current and next state are E and E′, and that the module runs from state Γ to Γ′ using the
Step rule. This rule also ensures that the state register contains the value of the current
state, by checking the value of ΓA [st]. It is then ensured that the resulting state is also the
value of the st register in the updated association map Γ′A [st].

The Finish rule returns the final value of running the module and is applied when the
fin register is set; the return value is then taken from the ret register.

Note that there is no step from State to Callstate; this is because function calls are not
supported, and it is therefore impossible in our semantics ever to reach a Callstate except
for the initial call to main. So the Call rule is only used at the very beginning of execution;
likewise, the Finish rule is only matched for the final return value from the main function.
As a result, the final rule called Return is never reached in practice, as the stack frame will
always be empty. This rule could ideally therefore be removed, however it is still present

85

4 Trusted Computing Base

to match the state transitions used in CompCert. To remove this rule, one would have to
show that the stack frame remains empty by induction over the semantics.

In addition to these rules, a valid semantics also needs an intial state and a final state.
These are therefore defined as follows:

Initial
is_internal % .main

initial_state (Callstate [] % .main [])

Final

final_state (Returnstate [] =) =

where the initial state is the Callstatewith an empty stack frame and no arguments for the
main function of program % , where this main function needs to be in the current translation
unit. The final state results in the program output of value = when reaching a Returnstate

with an empty stack frame.

4.2.3 Memory model

The Verilog semantics do not define a memory model for Verilog, as this is not needed for
a hardware description language. There is no preexisting architecture that Verilog will
produce; it can describe any memory layout that is needed. Instead of having a specific
semantics for memory, the Verilog semantics only needs to support the language features
that can produce these different memory layouts, these being Verilog arrays. I therefore
define semantics for updating Verilog arrays using blocking and nonblocking assignment.
This makes it possible to describe many different memory layouts in Verilog, providing a
lot of flexibility. I then have to develop a memory layout that will be targeted by the HLS
tool and prove that the C memory model that CompCert uses matches the interpretation of
arrays used in Verilog together with the memory layout that was chosen. The CompCert
memory model is infinite, whereas our representation of arrays in Verilog is inherently
finite. There have already been efforts to define a general finite memory model for all
intermediate languages in CompCert, such as CompCertS [Besson et al. 2018] or CompCert-
TSO [Ševčík et al. 2013], or keeping the intermediate languages intact and translating to a
more concrete finite memory model in the back end, such as in CompCertELF [Y.Wang et al.
2020]. I also define such a translation from CompCert’s standard infinite memory model
to finite arrays that can be represented in Verilog. There is therefore no more notion of an
abstract memory model and all the interactions to memory are encoded in the hardware
itself.

This translation is represented in figure 4.2. CompCert’s memory model is represented

86

4.2 A Formal Semantics for Verilog

CompCert’s Memory Model Verilog Memory Representation

base

0

1

··
·

0
1
2
3
4
5
6

addr data

DE
AD
BE
EF
12
34
56· · ·

· · ·
x[0] = 0xDEADBEEF;

0: Some 00000000

1: Some 12345600

2: Some 00000000

3: Some 00000000

4: Some 00000000

5: Some 00000000

6: Some 00000000· · ·
N: Some 00000000

0: Some DEADBEEF

1: None

2: None

3: None

4: None

5: None

6: None· · ·
N: None

Γ0 Δ0

stack[0] <= 0xDEADBEEF;

Figure 4.2: Change in the memory model during the translation of Rtl into Htl. The
state of the memories in each case is recorded straight after the execution of the store to
memory.

as a map from blocks to maps from memory addresses to memory contents. Each block
represents an area in memory; for example, a block can represent a global variable or a
stack for a function. CompCert also includes permissions that are associated with each
block, which are lost in the translation to arrays. In contrast, the array has a static size,
which has to be the same size as the writable addresses in CompCert’s memory.

Because there are no global variables in the C code, only the stack of the main function
will be allocated in the memory. Our Verilog semantics defines two finite arrays of optional
values, one for the blocking assignments map Γa and one for the nonblocking assignments
map Δa. The optional values are present to ensure correct merging of the two association
maps at the end of the clock cycle, so that information about which cells of the array were
modified is present. The invariant used in the proofs is that block associated with the
function stack should be equivalent to the merged representation of the Γa and Δa maps.

In particular, note that the Verilog arrays are word-addressable instead of the CompCert
memory model which is byte-addressable. The instruction set architectures of CPUs
typically specify memory as being byte-addressable, however, the implementation of the
memory is not that straightforward. CPUs usually implement multiple levels of caching
as well as the conversion from virtual addresses to physical addresses and may operate
on byte- or word-addressable memories behind the byte-addressable interface. Often, the
performance of the caches will be tuned to provide the best performance for reading and
writing words to memory. This makes it possible to have good general performance,
and makes it possible to interact with larger, but slower memories such as dynamic

87

4 Trusted Computing Base

random-access memory (DRAM). However, Vericert assumes that it is targeting an FPGA
without external DRAM, so only fast BRAM memory is used. This means that the memory
architecture can be specialised to work well with words without using a complex memory
architecture, by directly using a word-addressable BRAM. A single BRAM is enough to
support this subset of C that is translated to Verilog.

4.2.4 Deterministic Verilog semantics

Finally, to integrate the Verilog semantics into CompCert’s backward simulation framework,
we need to show that the Verilog semantics is deterministic. This result allows us to replace
the forward simulations I have proved with the desired backward simulations. This was
proven for the small-step semantics shown in figure 4.1.

Lemma 4.2. If a Verilog program + admits behaviours �1 and �2, then �1 and �2 must be
the same.

∀+ �1 �2. + ⇓ �1 ∧+ ⇓ �2 =⇒ �1 = �2.

Proof sketch. The Verilog semantics is deterministic because the order of operation of all
the constructs is defined, so there is only one way to evaluate the module, and hence
only one possible behaviour. In particular, non-determinism in the simulation of Verilog
designs often comes from the fact that always-blocks are evaluated in an arbitrary order.
However, as I ensure that always-blocks only communicate using nonblocking assignment,
the order of evaluation does not change the final state, meaning a sequential evaluation of
always-blocks can be chosen. �

4.3 Summary

In conclusion, the trusted computing base of Vericert is similar to that of CompCert.
The correctness theorem can remain unchanged, except for the change of the target
language semantics. The Verilog semantics can be formalised within CompCert’s semantic
framework. I reuse an existing semantics by Lööw and Myreen [2019] and modify it to be
a suitable HLS target, in addition to integrating the semantics into CompCert’s general
state transition framework for its intermediate languages.

88

Verified Hyperblock Scheduling5
This chapter describes the hyperblock scheduling pass in Vericert, which collects
operations into groups that can be executed in parallel. This chapter is based on
a paper coauthored with John Wickerson which has been submitted to PLDI 2024
[Herklotz and Wickerson 2024].

Many approaches to scheduling have been proposed over the years. Some, such as list
scheduling [Baker 2019, p.257] only reorder instructions within a basic block. This means
they squander opportunities for performance improvements that could be obtained by re-
ordering instructions across branches. A more powerful alternative is trace scheduling [J. R.
Ellis 1985; Fisher 1981], which works by creating paths (or ‘traces’) through the code, across
basic-block boundaries, and then reorders the instructions within those paths. In its most
general form, trace scheduling is considered infeasible on large programs, but two special
cases called superblock scheduling [Hwu et al. 1993] and hyperblock scheduling [Mahlke
et al. 1992] have been developed, both of which impose restrictions on the form of traces
in order to obtain tractable algorithms. Superblocks generalise basic blocks by allowing
early exits, while hyperblocks are basic blocks of predicated instructions with early exits.
Since hyperblocks are more general than superblocks, and since predicated execution can
be implemented efficiently in custom hardware, hyperblock scheduling is a natural fit for
HLS. Indeed, the use of hyperblock scheduling in HLS was first proposed over two decades
ago [Budiu and Goldstein 2002; Callahan and Wawrzynek 1998], and is nowadays used by
popular HLS tools such as AMD Vitis HLS [AMD 2023a], LegUp [Canis 2015, p.60], Google
XLS [Google 2023, line 112], and Bambu [Ferrandi 2014, line 304].

In this chapter, I present:

• the first verified implementation of hyperblock scheduling, which is more
general than Six et al.’s verified superblock scheduler [Six et al. 2022] and more
computationally tractable than Tristan and Leroy’s verified trace scheduler [Tristan
and Leroy 2008],

89

5 Verified Hyperblock Scheduling

Rtl
find

basic blocks RtlBlock schedule

if-conversion

RtlPar
5.2 5.2

5.3

5.4

Figure 5.1: New passes and intermediate languages introduced in this work.

• the first verified implementation of general if-conversion (a pre-scheduling
pass that turns if-statements into hyperblocks), building on CompCert’s naïve if-
converter that only handles simple cases [AbsInt 2019], and

• a novel use of a verified SAT solver during translation validation in order to
reason about predicates.

First, section 5.1 gives an overview of the scheduling optimisation, then section 5.2
introduces the new intermediate languages used for the scheduling transformation. Sec-
tion 5.3 then describes hyperblock construction using if-conversion followed by sections 5.4
to 5.6 describing the implementation, validation and verification of the actual hyperblock
transformation. Finally, section 5.8 describes the use of a validated SMT solver as part of
the hyperblock scheduling correctness proof.

5.1 Overview

Figure 5.1 shows the main components of our hyperblock scheduler. First I find the basic
blocks in Rtl and form RtlBlock, which structures the basic blocks as lists of instructions.

Vericert then performs if-conversion [Allen et al. 1983]. This is a transformation that
merges basic blocks from two sides of a fork in the CFG into a single, larger basic block
(now called a hyperblock) that uses predication to control which instructions are executed.
If-conversion is helpful because larger blocks can give the scheduler more opportunities to
find parallelism. Figure 5.2 gives an example of multiple Rtl basic blocks being merged
into a single hyperblock, where the if-statement is turned into an assignment. Note
that basic block was duplicated with two different predicate conditions, because it was
if-converted twice, once per branch of the if-statement. CompCert already has an if-
conversion pass [AbsInt 2019], but it can only handle simple cases such as replacing

90

5.1 Overview

5: if(r1 == r2)

goto 4

else goto 3;

4: r4 := 4;

goto 1;

3: r3 := 3;

goto 2;

2: r6 := r3 * r5;

goto 1;

1: r7 := r4 + r5;

5: {

p1 := r1 == r2;

p1 => r4 := 4;

p1 => r6 := r4 + r5;

!p1 => r3 := 3;

!p1 => r5 := r3;

!p1 => r6 := r4 + r5;

}

5: {

[(

p1 := r1 == r2;

p1 => r4 := 4;

!p1 => r3 := 3;

!p1 => r5 := r3;

p1 || !p1 =>

r6 := r4 + r5;

)]

}

if-conversion scheduling

Figure 5.2: Example of an if-conversion transformation performed in Vericert, followed
by a scheduling operation, after which the final node in the CFG can be shared.

if(p){x=a;}else{x=b;} with x=p?a:b, whereas our implementation can handle arbitrary
forks in the CFG. If-conversion can be applied selectively, using heuristics to judge which
basic blocks should be combined. Having proved if-conversion correct wherever it is
applied, these heuristics can be adjusted with no impact on the correctness proof.

Next the hyperblocks are scheduling in turn. The scheduler takes the list of predicated
instructions and produces a list of groups of instructions such that all the instructions
in the same group can be safely executed in parallel. Actually, our scheduler produces
a list of groups of lists of instructions. The idea behind this three-level representation,
which I call RtlPar, is that each inner list is a sequence of instructions that can be chained
together, then each group contains instruction chains that can be executed in parallel. In
this way, Vericert supports operation chaining, a long-established optimisation in hardware
design [Pangrle and Gajski 1987, p. 1101]. This is shown in the third hyperblock in figure 5.2,
where all instructions are actually chained, so are placed in the inner list, because the
overall estimated latency is less than half a clock period. Note here that the scheduler
can share the duplicated instruction in the original basic block, and it could furthermore
remove the predicate from the instruction completely as it is executed unconditionally. It
can therefore rectify the duplication that is inserted by the if-conversion transformation.

What remains is to ensure the correctness of each schedule. Following previous work
on verified scheduling by Tristan and Leroy [2008] and Six et al. [2022], I use translation
validation, but dealing with hyperblocks brings additional complexity, as explained below.

91

5 Verified Hyperblock Scheduling

Tristan and Leroy implement trace scheduling in its full generality. They use a tree to
represent all the possible control-flow paths through a block. These trees can be ‘expo-
nentially larger than the original code’ (Tristan and Leroy [2008, p. 25]), which makes it
prohibitively expensive to construct and compare the trees before and after scheduling,
and thus undermines the usefulness of their scheduler.

Six et al. restrict their scheduler to superblocks. Since a superblock has only a single
control-flow path (with early exits), the need for trees is avoided. This allows their validator
to be ‘efficient even for large superblocks’ (Six et al. [2022, p. 53]). However, superblocks are
less general than hyperblocks, and there are code patterns where superblock scheduling can
lead to considerable code duplication that hyperblocks would avoid. Moreover, superblock
scheduling is reliant on profiling and branch-prediction heuristics to pick a hot path
through the program – should such a hot path even exist.

Hyperblocks can branch and merge control flow using predicated execution, and hence
a single hyperblock can capture many control-flow paths without the exponential blow-
up that Tristan and Leroy encountered. In particular, hyperblocks can handle well the
case where two branches of a conditional statement are executed equally often, unlike
the superblocks that Six et al. use. However, our task of validating the equivalence of
two hyperblocks is complicated by having to reason about predicates. Where the prior
works only needed to check that the scheduled block contains a dependency-respecting
permutation of the original block’s instructions, the validator must account for the fact that
predicates may be modified during scheduling. For instance, the sequence p => i; !p => i,
which executes i if p holds and then executes i if p does not hold, may be optimised to i.

The approach I take is to translate both the RtlBlock hyperblock and the RtlPar hyper-
block (i.e., before and after scheduling) into their strongest postconditions, starting from
the same symbolic initial state, and then comparing these postconditions for equivalence
with the help of a SAT solver that I have programmed and verified in Coq. By being able
to solve queries like (p ∧ !p) ↔ false, the SAT solver enables reasoning about reordering
of instructions in a predicate-aware fashion.

5.2 New Intermediate Languages

Our work introduces two new intermediate languages: RtlBlock and RtlPar, which
implement the sequential and scheduled semantics of hyperblocks respectively. They are
based on CompCert’s Rtl, but instead of mapping from states to instructions, RtlBlock

92

5.2 New Intermediate Languages

registers: A, r1, r2, . . . ∈ r

predicates: ?, p1, p2, . . . ∈ p

CFG node labels: ! ∈ L ::= N

guard expressions: � ∈ G ::= p | ¬p | true | false | G ∧ G | G ∨ G

arithmetic ops: opa ∈ a ::= + | * | - | …
conditional ops: opc ∈ c ::= == | != | < | …

addressing modes: 3 ∈ d ::= Stack | Global | …
instructions: � ∈ I ::= skip // no-op

| G => r := r a r // arith/logical op
| G => r := d[r] // memory load
| G => d[r] := r // memory store
| G => p := r c r // assign predicate
| G => E(Icf) // block exit

control-flow instructions: �cf ∈ Icf ::= if (r c r) L L // conditional
| goto L // goto node
| call sig 5 ®r r L (function call)
| tailcall sig 5 ®r (tailcall)
| builtin 5ext ®r r L (builtin function)
| jumptable r ®L (jumptable)
| return r ? (function return)

� ∈ RtlBlock ::= � list

�par ∈ RtlPar ::= � list list list

Figure 5.3: Syntax of RtlBlock and RtlPar, with our hyperblock additions highlighted.

maps from states to hyperblocks, and RtlPar maps from states to parallel hyperblocks.

Hyperblocks aremade up of instructions as defined in figure 5.3, where®· denotes a list and
·? denotes an optional parameter. Most instructions are similar to their Rtl counterparts,
except each instruction is now guarded by an optional predicate. One additional instruction
is for setting a predicate (?) equal to an evaluated condition (A1 opc A2). The other new
instruction is E, which takes a control-flow instruction (�cf) and allows for early exit from
the hyperblock.

These instructions are used in both RtlBlock and RtlPar. The main difference between
these two languages is how these instructions are arranged within the hyperblock and the
execution semantics of the hyperblock. An RtlBlock hyperblock is a list of instructions,
with a straightforward sequential semantics. An RtlPar hyperblock is a list of lists of lists
of instructions, with nested blocks corresponding to where instructions should be placed
in hardware. Each innermost list contains a chain of instructions that can be executed
sequentially within a single clock cycle; each middle list contains a group of chains that can

93

5 Verified Hyperblock Scheduling

be executed in parallel; and the outermost list contains groups to be executed sequentially
(in consecutive clock cycles).

The existing CompCert semantics for Rtl is a small-step operational semantics defined
on a CFG. At each step, the instruction in the CFG at the current program counter is
evaluated in a context Γ. This is a 3-tuple comprising an environment ΓEnv that has global
information about the program as well as local information about the current function
being executed, a mapping ΓR from registers to values, and a mapping ΓM for the memory.

In order to give a semantics for RtlBlock and RtlPar, I need to handle predicates, so I
turn Γ into a 4-tuple (ΓEnv, ΓR, ΓP, ΓM), where the additional component ΓP maps predicates
to Booleans. Moreover, I need to deal with CFGs where each node is not just a single
instruction, but a hyperblock. The semantics, which I provide in figure 5.4, is big-step in the
sense that it executes an entire hyperblock in a single step. The ExecInstr rule executes
an arithmetic instruction if its guard evaluates to true (and there are similar rules for the
other guarded instructions). The ExecInstrFalse rule handles the case where the guard
does not hold. ExecExit handles the execution of an exit instruction by recording the
control-flow instruction �cf for leaving the block. The next two rules are for executing an
instruction list, with BlockContinue handling the case where the head instruction does
not exit the block, and BlockExit handling the case where it does. Finally, ExecRtlBlock
and ExecRtlPar provide the semantics of RtlBlock and RtlPar blocks respectively. Both
languages use the list execution semantics defined by the above rules, but RtlPar blocks
are first flattened into a single list (via concat).

Note that these rules define a sequential semantics for RtlPar. That is, although RtlPar
blocks contain lists of instruction chains that have been identified by the scheduler as being
suitable for parallel execution, our semantics nonetheless executes them sequentially. This
is because although the scheduler identifies where parallelism can be profitably extracted,
the program does not actually become parallel until the final ‘forward substitution’ pass,
where Verilog blocking assignments become nonblocking assignments. Hence, to avoid
unnecessary complexity, the semantics are kept sequential at the RtlPar stage. (A parallel
RtlPar semantics may allow more optimisations to be validated, but we save that for
future work.)

94

5.3 Verified If-Conversion

ExecInstr
ΓP ` � ↓ true Γ ` r1 opa r2 ↓ E

Γ ` (� => rd := r1 opa r2) ⇓I ((ΓR [rd ↦→ E] , ΓP, ΓM), None)

ExecInstrFalse
ΓP ` � ↓ false

Γ ` (� => _) ⇓I (Γ, None)

ExecExit
ΓP ` � ↓ true

Γ ` (� => E(�cf)) ⇓I (Γ, b�cfc)

BlockContinue
Γ ` � ⇓I (Γ′, None) Γ′ ` ; ⇓list(I) (Γ′′, �cf)

Γ ` � :: ; ⇓list(I) (Γ′′, �cf)

BlockExit
Γ ` � ⇓I (Γ′, b�cfc)

Γ ` � :: ; ⇓list(I) (Γ′, �cf)

ExecRtlBlock
Γ ` � ⇓list(I) (Γ′, �cf)
Γ ` � ⇓RtlBlock (Γ′, �cf)

ExecRtlPar
Γ ` concat(concat �par) ⇓list(I) (Γ′, �cf)

Γ ` �par ⇓RtlPar (Γ′, �cf)

Figure 5.4: Semantics of RtlBlock and RtlPar hyperblocks.

5.3 Verified If-Conversion

If-conversion introduces the predicated instructions that form hyperblocks. CompCert
does have an if-converter already, but it applies only in a few special cases. We need a more
general algorithm that can handle arbitrary branching code. I therefore implement the
first formally verified implementation of a general if-conversion algorithm, with support
for heuristics for branch prediction.

To simplify both the implementation of the if-converter and its correctness proof, it is
split up into three distinct transformations, which are also shown in figure 5.5:

RtlBlock
condition
elimination RtlBlock

block
inlining

external
decision
procedure

dead block
elimination RtlBlock

Figure 5.5: Details of the if-conversion pass, showing the three different stages of the
transformation.

95

5 Verified Hyperblock Scheduling

p1 := r10 == r11

p1 => E(goto 2)

!p1 => E(goto 3)

r1 := 4

E(goto 4)

r1 := 3

E(goto 4)

r3 := r1 * r4

E(goto 10)

1

2 3

4

p1 !p1

p1 := r10 == r11

p1 => E(goto 2)

!p1 => E(goto 3)

inline 4

into 3

r1 := 4

E(goto 4)

r1 := 3

r3 := r1 * r4

E(goto 10)

r3 := r1 * r4

E(goto 10)

1′

2′
3′

4′

p1 !p1

p1 := r10 == r11

p1 => E(goto 2)

!p1 => r1 := 3

!p1 => r3 := r1 * r4

!p1 => E(goto 10)

inline 3′

into 1′

r1 := 4

E(goto 4)

r1 := 3

r3 := r1 * r4

E(goto 10)

r3 := r1 * r4

E(goto 10)

p1

1′′

2′′
3′′

4′′

Figure 5.6: An example showing two iterations of the block-inlining pass.

1. Condition Elimination First, every conditional instruction in the block is replaced
by two predicated goto instructions. For example:

E(if c n1 n2);

p := c;

p => E(goto n1);

!p => E(goto n2);

condition

elimination

2. Block Inlining This is performed by replacing a predicated goto instruction by
the list of instructions in the block that it points to, adding the predicate to each
of those instructions. This transformation only converts one level of blocks at a
time, but it can be repeatedly invoked to create larger blocks, as shown in figure 5.6.
Currently, the block inlining pass is called a fixed number of times, however, it should
be possible to execute it a variable number of times depending on the if-conversions
that are selected by the decision procedure. The pointed-to block is left unchanged
in case it is still pointed to by other blocks; as such, this transformation performs
tail duplication [Chang et al. 1991].

3. Dead Block Elimination Finally, any blocks that are now unreachable from the
function’s entry-point (such as 3′′ in figure 5.6) are removed, to reduce code size.

96

5.4 Implementing Hyperblock Scheduling

The decision about which goto instructions should be inlined is offloaded to an external
procedure. This separation of concerns means that the correctness of the transformation
can be proven once-and-for-all for a single, general if-conversion algorithm, which can
then be extended with various heuristics to change the performance of the generated code.
In my implementation, I use simple static heuristics to pick these paths, following Ball
and Larus [1993], such as avoiding inlining loop back-edges, or blocks with an instruction
count that exceeds a threshold (currently 50).

The following theorem states the correctness of if-conversion using a forward simulation.

Theorem 5.1 (Correctness of if-conversion). for a program (with behaviour B that does
not go wrong behaviour, then ifconvert(() should have the same behaviour. That is:

B ∉ Wrong ∧ (⇓ B =⇒ ifconvert(() ⇓ B .

Proof sketch. Each of the three transformations is verified using the simulation-diagram
approach [Leroy 2009a, p. 379]. These simulations are then composed into an overall
simulation for if-conversion. Condition elimination is straightforward because it is a
purely local replacement. Dead block elimination is also straightforward, being similar
to a CFG-pruning transformation from CompCertSSA [Barthe et al. 2014]. Both of these
transformations can be verified using a lock-step simulation diagram.

The block inlining pass is a bit more involved. To see why, consider how to prove
a forward simulation for the first transformation in figure 5.6. The edges 1 → 1′ ,
2 → 2′ , and 4 → 4′ , are straightforward, but 3 is challenging, because 3′ does not
straightforwardly simulate 3 (there is no edge from 3′ that can mimic the edge from 3 to
4). To resolve this, our simulation relation has to be more fine-grained, so that 3 can be
mapped to the first ‘part’ of 3′ and 4 can be mapped to the second. This is proven using
a ‘star’ simulation diagram, so that the if-converted block can stutter in the case that the
next edge was if-converted.

�

5.4 Implementing Hyperblock Scheduling

This section discusses the implementation of hyperblock scheduling in Vericert. The sched-
uler takes each hyperblock of an if-converted RtlBlock program in turn, and schedules it
to form an RtlPar hyperblock. The scheduler is unverified, but it uses a verified translation
validation algorithm to prove each output correct, which I will describe in section 5.5.

97

5 Verified Hyperblock Scheduling

The scheduler is written in OCaml, and follows the SDC scheduling approach [Cong and
Zhang 2006]. The SDC scheduler generates a function that should be minimised plus a set
of constraints that must be respected while doing so. In my case, the function I minimise
is the overall latency of the block (i.e. the end time of the last operation). The constraints
come from three sources. First, the cumulative latency of all the operations in each chain
must not exceed a predefined limit; this ensures that operation chaining does not reduce
the maximum clock frequency of the resultant hardware. Second, whenever operation �1

has a data dependency on �2, �2’s end time must precede �1’s start time. Third, since our
hardware has only a single BRAM controller, no two memory operations (loads or stores)
may be scheduled for the same cycle.

These are all passed to a linear program (LP) solver; we use lp_solve [Berkelaar 2010].
The solver outputs a mapping from instructions to states (clock cycles). We reconstruct
from this mapping an RtlPar block. Data-dependent instructions mapped to the same state
are placed into the same chain, at the innermost level of the RtlPar block; independent
instructions mapped to the same state are placed in different chains in the same parallel
group; and instructions mapped to different states are placed in different groups (the
outermost list of the RtlPar block).

Figure 5.7 shows an example of our scheduler in action. In figure 5.7a, we see the
RtlBlock hyperblock to be scheduled. It contains six predicated operations: two additions,
three multiplications, and a predicate assignment. The scheduler analyses the hyperblock
and constructs a dependency graph (figure 5.7c). Each edge of the graph is annotated with
the combinational delay of the operation at its head. For example, every edge that leads to
operation 8 E(goto 10) is annotated with a delay of 0 because the assignment to the state

variable is performed immediately.

The scheduler exploits predicates to eliminate dependencies. For example, 3 and 4

appear dependent due to a write-after-write conflict on r3, but because their predicates are
mutually exclusive, the conflict can be removed from the dependency graph. The scheduler
would also remove operations whose predicates are false.

The scheduler transforms the RtlBlock hyperblock into a RtlPar hyperblock (fig-
ure 5.7b), the runtime behaviour of which is shown in figure 5.7d. Even though the addition
in 2 and the comparison in 6 both depend on 1 , they can still be placed into the same
state because the addition has a short enough combinational delay that two additions can
be performed in a single clock cycle. The multiplication in 3 can also be placed into the
same state as it does not have any data dependencies with any of the other instructions.

98

5.4 Implementing Hyperblock Scheduling

1 [r2 := r1 + r4;

6 p1 => p3 := r4 == r2;

2 p1 => r1 := r2 + r4;

3 !p1 & !p2 => r3 := r1 * r1;

4 p2 => r3 := r1 * r4;

7 p2 => E(goto 10);

5 !p2 => r3 := r3 * r3;

8 E(goto 10);]

(a) RtlBlock hyperblock to be scheduled.

3 [[[!p2 & !p1 => r3 := r1 * r1];

1 [r2 := r1 + r4;

2 p1 => r1 := r2 + r4;

6 p1 => p3 := r4 == r2]];

5 [[!p2 => r3 := r3 * r3];

4 [p2 => r3 := r1 * r4];

8 [E(goto 10);]]]

(b) Scheduled RtlPar hyperblock.

1

2

3

4
5

6

8

1

1
2

1

0
0 0

(c) Data dependencies in
the RtlBlock hyperblock
(with transitive dependen-
cies removed).

clk

r1 p1 => r2 + r4

r2 r1 + r4

r3 !p2 & !p1 => r1 * r1 p2 => r1 * r4 || !p2 => r3 * r3

p3 p1 => r4 == r2

state 10

(d) Timing diagram showing how the operations in the Rtl-
Par hyperblock are scheduled in the hardware. The colours
represent which operations are allocated to which register
in each cycle. We only show the positive edges of the clock
(clk) because the negative edges of the clock are reserved for
memory operations.

Figure 5.7: Example of scheduling a hyperblock.

99

5 Verified Hyperblock Scheduling

1 p1 => p2 := r2 == 0;

2 p1 & p2 => r1 := r2 + 2;

3 !p1 => r2 := 1;

3 !p1 => r2 := 1;

1 p1 => p2 := r2 == 0;

2 p1 & p2 => r1 := r2 + 2;

scheduling

Figure 5.8: An example schedule. It is valid to move 3 before 1 and 2 because despite
the appearance of data dependencies on r2, 3 is in fact independent because its guard
is mutually exclusive with the other two.

The next state has two independent multiplications, 4 and 5 , that can be scheduled for
the same cycle and to the same resource since they never execute at the same time. Finally,
the hyperblock is terminated by a control-flow instruction that jumps to state 10. This
operation needs to be scheduled after all the other operations, but because it is performed
by simply setting the next state of the state machine, this can be done in parallel with the
last operation.

5.5 Validation of Hyperblock Scheduling

Although the scheduling algorithm itself is complex with many heuristics, it is quite
simple to check each specific schedule. To do so, we follow Tristan and Leroy [2008]
and symbolically execute each block before and after scheduling, then compare the two
obtained symbolic states for equivalence. However, several non-obvious design decisions
need to be made so that the validation process is tractable in the presence of hyperblocks.
In what follows, we explain these decisions informally with the aid of the example shown
in figure 5.8. Section 5.5.5 presents the validator more precisely.

5.5.1 First attempt: basic symbolic execution

The most natural way to extend Tristan and Leroy’s approach is to treat predicates in the
same way as registers. Symbolic execution then yields a symbolic state that assigns to each
register and predicate an expression that is in terms of the initial values of the registers and
predicates. Applying this approach to the example in figure 5.8 produces the two symbolic
states shown in table 5.1. Note that we write r20 for the initial value of r2, and so on.

The pre- and post-scheduling expressions for r2 are syntactically equal, but reasoning
about the equivalence of the two expressions for p2 is more involved: our validator needs
to understand that if ¬p10 then 1 else r20 is equivalent to r20 in any context where p10

100

5.5 Validation of Hyperblock Scheduling

Table 5.1: First attempt: basic symbolic execution

Pre-scheduling symbolic state Post-scheduling symbolic state

r1

if (p10 ∧ (if p1
0
then r2

0 == 0 else p2
0))

then (if ¬p1
0
then 1 else r2

0) + 2

else r1
0

if

©«
p1

0 ∧

©«

if p1
0

then
©«
if ¬p1

0

then 1

else r2
0

ª®®¬ == 0

else p2
0

ª®®®®®®®¬

ª®®®®®®®¬
then (if ¬p1

0
then 1 else r2

0) + 2

else r1
0

r2 if ¬p10 then 1 else r20 if ¬p10 then 1 else r20

p2 if p10 then r20 == 0 else p20

if p1
0

then (if ¬p1
0
then 1 else r2

0) == 0
else p2

0

is true. Such reasoning could be performed by an SMT solver, encoding each arithmetic
operator as an uninterpreted function, but formalising an SMT solver involves a lot of
additional proof, and would be slow at run time.

5.5.2 Second attempt: using value summaries

Instead we would prefer to rely on a SAT solver, as it is easier to formalise and verify. A
SAT solver can handle Boolean reasoning nicely, but cannot reason about arithmetic. So,
to allow the use of a SAT solver, we rewrite each expression into a normal form where all
the if-expressions are pulled to the top level, e.g. replacing (if ¬p10 then 1 else r20) == 0

with if ¬p10 then 1 == 0 else r20 == 0. On our worked example (figure 5.8), this results in
the symbolic states shown in table 5.2.

Note that we treat register expressions and predicate expressions slightly differently. For
register expressions, we combine all the if-expressions into a single multi-way conditional,
which we write using ‘cases’ notation. We call these expressions value summaries after
Sen et al. [2015], who used the same data structure for a different purpose (namely, making
symbolic execution more efficient).

For predicate expressions, we do not need value summaries, because all of the if 41 then

42 else 43 operations that appear in the predicate expressions become purely Boolean (rather
than a mix of integers and Booleans), and hence can be expanded to (41 → 42)∧ (¬41 → 43),

101

5 Verified Hyperblock Scheduling

Table 5.2: Second attempt: using value summaries.

Pre-scheduling symbolic state Post-scheduling symbolic state

r1

r20 + 2, if p10 ∧

((
p1

0 → r2
0 == 0

)
∧

(
¬p1

0 → p2
0))

r10, if ¬
(
p10 ∧

((
p1

0 → r2
0 == 0

)
∧

(
¬p1

0 → p2
0)))

1 + 2, if p10 ∧k ∧ ¬p10

r20 + 2, if p10 ∧k ∧ p10

r10, if ¬(p10 ∧k)

r2

{
1, if ¬p10

r20, if p10

{
1, if ¬p10

r20, if p10

p2
(
p10 → r20 == 0

)
∧

(
¬p10 → p20

)
k

wherek abbreviates
(
p10 →

((
¬p10 → 1 == 0

)
∧

(
¬¬p10 → r20 == 0

)))
∧

(
¬p10 → p20

)
as we have done in table 5.2. These predicate expressions can then be straightforwardly
translated into propositional formulas that can be reasoned about using a SAT solver.
For example, the generated query for checking the equivalence between the expressions
assigned to p2 looks like the following:

((
Gp10 → Gr20==0

)
∧

(
¬Gp10 → Gp20

))
↔ (k (5.1)

where (k abbreviates
((
Gp10 →

((
¬Gp10 → G1==0

)
∧

(
¬¬Gp10 → Gr20==0

)))
∧

(
¬Gp10 → Gp20

))
.

In the encoding, each SAT variable G4 encodes the truth value of the expression 4 in the
formula.

We can also generate SAT queries to check the equivalence of the register expressions.
This involves issuing multiple queries to the SAT solver: if an expression appears in both
the pre- and post-scheduling value summaries, then we generate a query to check that their
guards are equivalent, and if an expression only appears in one of the value summaries,
then its guard should be equivalent to false. For instance, to check r1 we generate the
following three SAT queries:

false ↔ Gp10 ∧ (k ∧ ¬Gp10(
Gp10 ∧

((
Gp10 → Gr20==0

)
∧

(
¬Gp10 → Gp20

)))
↔

(
Gp10 ∧ (k ∧ Gp10

)
¬

(
Gp10 ∧

(((
Gp10 → Gr20==0

)
∧

(
¬Gp10 → Gp20

))))
↔ ¬

(
Gp10 ∧ (k

) (5.2)

However, in constructing all these SAT queries, we have assumed that a Boolean value
can be assigned to each of the atoms in a formula. This might not actually be the case – for

102

5.5 Validation of Hyperblock Scheduling

instance, r1/r2 is not evaluable if r2 is zero, and r1 == r2 is not evaluable if either r1 or r2

is an invalid pointer. So, to compare the two expressions for p2, we actually need to use
three-valued logic. That means all the SAT variables in (5.1) and (5.2) actually need to be
pairs of binary variables, and the ∧ and ∨ operations need to be three-valued analogues of
conjunction and disjunction. This is a problem because we have seen already that these
formulas, particularly those for comparing register expressions, become quite large even
for toy examples. Indeed, when we tried this three-valued approach on the test cases in
our evaluation (chapter 7), most ran out of memory during validation.

Hence, in the next subsection we describe how we manage to avoid three-valued logic
where possible.

5.5.3 Third attempt: using value summaries and final-state guards

Although it was not the case in our worked example, it turns out that when comparing the
predicate expressions that arise in realistic examples, syntactic equality or near-equality
usually suffices. This means that we only need to resort to solving three-valued SAT queries
as an occasional fallback, so its performance impact is limited in practice.

Where syntactic methods usually do not suffice is for comparing the guards of register
expressions. However, here we can actually avoid the need for three-valued logic altogether.
We observe that the guards in the r1 expressions are simply copied from the expressions for
p2 (which we abbreviated ask in table 5.2), so rather than writing out the full expressions
in the guards, we can write p2f as a shorthand (the ‘f’ clarifies that it is referring to the
final value of p2).

To make it possible to refer to final values, we need to ensure that once p2 has been
assigned or used, it is never overwritten. We can achieve this by enforcing SSA form for
predicate assignments. That does not impose any restrictions on the Vericert user because
predicates are only introduced by internal compiler transformations. SSA form is not
needed for register assignments.

The resultant symbolic states are shown in table 5.3. It can immediately be seen that the
expressions have become much shorter. Indeed, the three queries for validating r1 become:

false ↔ Gp1f ∧ Gp2f ∧ ¬Gp1f

Gp1f ∧ Gp2f ↔ Gp1f ∧ Gp2f ∧ Gp1f

¬(Gp1f ∧ Gp2f) ↔ ¬(Gp1f ∧ Gp2f)

(5.3)

103

5 Verified Hyperblock Scheduling

Table 5.3: Third attempt: using value summaries and final values in guards.

Pre-scheduling symbolic state Post-scheduling symbolic state

r1

{
r20 + 2, if p1f ∧ p2f

r10, if ¬(p1f ∧ p2f)

1 + 2, if p1f ∧ p2f ∧ ¬p1f

r20 + 2, if p1f ∧ p2f ∧ p1f

r10, if ¬(p1f ∧ p2f)

r2

{
1, if ¬p1f

r20, if p1f

{
1, if ¬p1f

r20, if p1f

p2
(
p10 → r20 == 0

)
∧

(
¬p10 → p20

)
k

wherek abbreviates
(
p10 →

((
¬p10 → 1 == 0

)
∧

(
¬¬p10 → r20 == 0

)))
∧

(
¬p10 → p20

)
What is less obvious is that we no longer need three-valued logic either. This is because:

• We can assume that all predicate expressions in the pre-scheduling symbolic state
are evaluable, because if any were not, the input program would fail at run time and
we do not need to prove anything about our scheduler.

• We have already proven, either using syntactic comparison or three-valued logic,
that the predicate expressions in the post-scheduling symbolic state are equivalent
to those in the pre-scheduling state, which means that they too must be evaluable.

• The guards in the register expressions only refer to these expressions – they cannot
include unsafe expressions like division or pointer comparison – and so they must
also be evaluable.

• It therefore suffices to use 2-valued logic to compare the guards.

5.5.4 Handling overwritten expressions

There is an additional subtlety that needs to be handled: the possibility that the scheduler
introduces undefined behaviour. Consider the following example, due to Tristan and Leroy
[2008].

r3 := r2 + 4;
r3 := 5 / r1;

r3 := r2 + 4;
scheduling

104

5.5 Validation of Hyperblock Scheduling

Symbolic execution yields identical pre- and post-scheduling results, namely r3 ↦→ r20+4.
Despite this, the schedule is invalid because the post-scheduling block only executes
correctly when r1 is nonzero. To detect and forbid such cases, we follow Tristan and Leroy
and keep track of all the expressions that are evaluated into a register or memory location.
We shall call this the encountered expression set.1 For example, the encountered expressions
set of the pre-scheduling block above includes only r20 + 4, but the post-scheduling block’s
set also includes 5/r10. Because the encountered set has grown, we deem the schedule
invalid.

In order to use Tristan and Leroy’s approach with hyperblocks, it needs extending to
handle predicated instructions. The obvious way to do this is to generate the encountered
expressions for each predicated instruction in the same way that we perform symbolic
execution, which is essentially to treat p => r := e as if it is the non-predicated instruction
r := p ? e : r. However, this approach leads to too many unnecessary constraints being
imposed on the scheduler, leaving it unable to reorder some instructions that have only
benign WAW dependencies. To see this, consider the following example.

p1 => r1 := 1;

!p1 => r1 := 2;

!p1 => r1 := 2;

p1 => r1 := 1;
scheduling

When performing symbolic execution on the pre-scheduling block, we encounter the pair
of expressions if p1f then 1 else r10 and if ¬p1f then 2 else if p1f then 1 else r10, but on the
post-scheduling block we encounter if ¬p1f then 2 else r10 and if p1f then 1 else if ¬p1f

then 2 else r10; these two pairs are not equivalent, so this (correct) schedule cannot be
validated.

Instead, for the purposes of calculating encountered expressions, our approach is to
treat p => r := e as the instruction r := p ? e : •, where • is a dummy expression rep-
resenting the absence of an assignment. Now the set of encountered expressions is
{if p1f then 1 else •, if ¬p1f then 2 else •} for both pre- and post-scheduling, so valid-
ation can be completed.

5.5.5 Formalising the symbolic state and symbolic execution

The previous sections gave an informal overview of the structure of the symbolic state and
the validation algorithm. This section will give formal definitions of these concepts.
1Tristan and Leroy simply called them ‘constraints’.

105

5 Verified Hyperblock Scheduling

arithmetic
expressions: A ::= r 0 // initial value of register

| M[A] // load from memory
| A a A // binary arithmetic operation

memory
expressions: M ::= Mem0 // initial contents of memory

| M[A ->A] // updated memory
predicate

expressions: B ::= p0 | ¬p0 // initial value of predicate
| A c A | ¬(A c A) // binary conditional operation
| true | false // true, false
| B ∧ B | B ∨ B // and, or

value
summaries: S(C) = P(G × C) // select an element of C according

// to which predicate holds
symbolic

states: fR ∈ ΣR = r → S(A) // expressions for registers
fP ∈ ΣP = p → B // expressions for predicates
fM ∈ ΣM = S(M) // contents of memory
fE ∈ ΣE = S(I?cf) // instruction to exit block
fC ∈ ΣC = P(S(A +M)) // set of encountered expressions

Figure 5.9: Syntax of symbolic states.

Symbolic states Figure 5.9 defines the symbolic states that symbolic execution produces.
Several components make use of value summaries (as explained in section 5.5.2), so we
define the value summary S(C) as a set of terms of type C , each paired with a Boolean
guard of type G. Henceforth, we shall sometimes write value summaries explicitly as a set
of (guard, value) pairs.

A symbolic state f is made up of five components, the main three being: a register map
fR that assigns an arithmetic expression (as a value summary) to each register, a predicate
map fP that assigns a Boolean expression to each predicate, and an expression fM for
the contents of memory (again as a value summary). We also need symbolic execution
to track how control exits the block (to make sure that it does so in the same way after
scheduling), so fE stores a value summary that evaluates to the instruction that is executed
to exit the block (or to ‘None’ if the block has not finished yet). Finally, fC tracks the set of
encountered expressions, as motivated in section 5.5.4.

106

5.5 Validation of Hyperblock Scheduling

Constructing symbolic states The expressions are constructed using a function which
updates the symbolic expressions assigned for each resource. A core function used to
update value summaries is the coalescing union operator]@ [Sen et al. 2015], which
conjoins ¬@ to each guard in its left operand and @ to each guard in its right operand:

]@ ∈ S(X) → S(X) → S(X)
-1]@ -2 , {(¬@ ∧�, E) | (�, E) ∈ -1} ∪ {(@ ∧�, E) | (�, E) ∈ -2}

(5.4)

To turn a value summary back into a Boolean formula, we use the following operation,
where 6 expands gates into predicate expressions:

∧ ∈ S(B) → B

∧{ (�1, �1), . . . , (�=, �=) } , (6(�1) → �1) ∧ · · · ∧ (6(�=) → �=)
(5.5)

It is also useful to have an applicative interface for value summaries, so that when
we have value summaries of functions and of inputs, we can obtain a value summary of
outputs:

<∗> ∈ S(X → Y) → S(X) → S(Y)
� <∗> - , { (� ∧�′, 5 (G)) | (�, 5) ∈ �, (�′, G) ∈ - }

(5.6)

Following Sen et al. [2015], we simplify value summaries as they are built up, so as to
keep their size from exploding: coalescing two elements (�, E) and (�′, E′) where E = E′

into a single element (� ∨�′, E), and removing elements (�, E) whenever � ↔ false.

Symbolic execution The symbolic execution of instruction � is performed by the U
function. It takes the current symbolic state f and produces an updated one. It also
takes an ‘enabled’ predicate @, which is conjoined with the current instruction’s guard; it
ensures that after an exit instruction is taken, any subsequent instructions are nullified. So,
whenever an exit instruction is encountered, the enabled predicate is conjoined with the
negation of the exit instruction’s guard.

In figure 5.10, we show three important cases of U : symbolically executing an arithmetic
operation, an exit instruction, and a predicate assignment. To symbolically execute a whole
hyperblock (denoted ·#), we run U on each instruction in turn, threading the symbolic state
through, starting from the empty symbolic state (denoted ∅):

[81; 82; . . . ; 8=]# , U 8= (. . . (U 82 (U 81 (true,∅))) . . .) (5.7)

107

5 Verified Hyperblock Scheduling

U (� => r := r1 + r2) (@, (fR, fP, fM, fE, fC)) // arithmetic operation
, let q = { (true, (+)) } <∗> fR [r1] <∗> fR [r2] in

let f′
R = fR

[
r ↦→ (fR [r]]�∧@ q)

]
in

let f′
C = fC ∪ { { (true, •) }]�∧@ q } in

(@, (f′
R, fP, fM, fE, f

′
C))

U (� => E(�cf)) (@, (fR, fP, fM, fE, fC)) // exit instruction
, let f′

E = fE]�∧@ { (true, b�cfc) } in(
@ ∧ ¬�,

(
fR, fP, fM, f

′
E, fC

))
U (� => p := r1 == r2) (@, (fR, fP, fM, fE, fC)) // predicate assignment
, let q = ∧({ (� ∧ @, (==)) } <∗> fR [r1] <∗> fR [r2]) in

let f′
P = fP [p ↦→ (q ∧ (¬(� ∧ @) → fP [p]))] in

(@, (fR, f′
P, fM, fE, fC))

Figure 5.10: Symbolic execution of selected instructions

Comparing symbolic states After symbolically executing the RtlBlock and RtlPar
blocks, we obtain two symbolic states, f and f′. We wish to show that f′ is a symbolic
refinement of f (written f & f′), and we do so by component-wise comparison, as shown
in equation (5.8) and explained below.

fR ≈ f′
R fP = f′

P ∨ fP ≈3v f
′
P fM ≈ f′

M fE ≈ f′
E fC & f′

C

f & f′
(5.8)

The core comparison operation that we rely upon is between two value summaries,
written ≈. Whenever a value appears in both value summaries, we check that its guards
are equivalent (via a SAT query), and whenever a value appears in just one value summary,
we check that its guard is equivalent to false (again via SAT query). This approach suffices
for the register maps (fR ≈ f′

R), the memory maps (fM ≈ f′
M), and the exit expressions

(fE ≈ f′
E). For the predicate maps, we first attempt to show syntactic equality (fP = f′

P). If
this fails, we fall back to using a slow but reliable equivalence check with a three-valued
solver (fP ≈3v f

′
P). Finally, for the encounted expressions sets, we write fC & f′

C to mean
that every expression in f′

C has an equivalent in fC.

5.5.6 Defining a Verified Scheduler

We can now define a verified scheduler using the standard translation validation approach:

108

5.6 Proving the Validator Correct

scheduleAndVerify � , let �par = schedule � in

if � # & � #
par then b�parc else Error

5.6 Proving the Validator Correct

In order to prove our validator correct, we need to prove that whenever our validator
deems � #

par to be a symbolic refinement of � #, there is indeed a forward simulation from
� to �par; that is:

� # & � #
par =⇒ � { �par. (5.9)

The natural way to prove � { �par is to follow Tristan and Leroy [2008] by constructing
the chain � { � # { � #

par { �par. In order to do this, we need to be able to talk about
forward simulations that involve not just programs (� and �par) but also symbolic states
(� # and � #

par). Thus we need a semantics not just for blocks (cf. figure 5.4) but also for
symbolic states.

5.6.1 A semantics for symbolic states

We need a function that takes a symbolic state f and applies it to an initial concrete state
Γ. The output is the concrete state Γ′, together with the control-flow instruction �cf that
is executed to exit the block. The function is written as Γ ` f ⇓ (Γ′, �cf), and is defined in
figure 5.11. It works as follows:

• The entry point is the SemState rule. This rule has five antecedents. The first
constructs a Boolean value for each predicate in the final state. The second constructs
a value for each register in the final state, consulting Γ′P to get the final values of
predicates when evaluating value summaries (cf. section 5.5.3). The third constructs
the final contents of memory. The fourth determines the control-flow instruction
for exiting the block. The fifth does not calculate a component of the final state;
instead, its purpose is to prevent the final state being calculated at all if any of the
encountered expressions (cf. section 5.5.4) are unevaluable.

• The ⇓A rules (RegBase, Load, and Op) map register expressions to concrete values
(integer, float, pointer, or ‘undefined’). In the Op rule, we write ↓ to indicate the
existing CompCert evaluation semantics for the arithmetic operation opa, which

109

5 Verified Hyperblock Scheduling

RegBase

Γ ` A 0 ⇓A ΓR [A]

PredBase

Γ ` ?0 ⇓B ΓP [?]

MemBase

Γ ` Mem0 ⇓M ΓM

Option

Γ ` b0c ⇓I?cf 0

Op
Γ ` 41 ⇓A E1 Γ ` 42 ⇓A E2

Γ ` E1 opa E2 ↓ E
Γ ` 41 opa 42 ⇓A E

Pred
Γ ` 41 ⇓A E1 Γ ` 42 ⇓A E2

Γ ` E1 opc E2 ↓ b1c
Γ ` 41 opc 42 ⇓B 1

Store
Γ ` 41 ⇓M <

Γ ` 42 ⇓A 8 Γ ` 43 ⇓A E

Γ ` 41[42 -> 43] ⇓M <[8 ↦→ E]

Load
Γ ` 41 ⇓M <

Γ ` 42 ⇓A 8

Γ ` 41[42] ⇓A <[8]

PredAndTrue
Γ ` �1 ⇓B true
Γ ` �2 ⇓B true

Γ ` �1 ∧ �2 ⇓B true

PredAndFalse1
Γ ` �1 ⇓B false

Γ ` �1 ∧ �2 ⇓B false

PredAndFalse2
Γ ` �2 ⇓B false

Γ ` �1 ∧ �2 ⇓B false

PredOrTrue1
Γ ` �1 ⇓B true

Γ ` �1 ∨ �2 ⇓B true

PredOrTrue2
Γ ` �2 ⇓B true

Γ ` �1 ∨ �2 ⇓B true

PredOrFalse
Γ ` �1 ⇓B false Γ ` �2 ⇓B false

Γ ` �1 ∨ �2 ⇓B false

ArithEmpty

Γ ` • ⇓A 1

MemEmpty

Γ ` • ⇓M ΓM

Sum1
Γ ` 4 ⇓C E
Γ ` 4 ⇓C+D E

Sum2
Γ ` 4 ⇓D E

Γ ` 4 ⇓C+D E

PredExpr
(�, 4) ∈ B

% f ` � ↓ true
Γ ` 4 ⇓C E

% f , Γ ` B ⇓S(C) E

SemState
∀G . Γ ` fP [G] ⇓B Γ′P [G]

∀G . Γ′P, Γ ` fR [G] ⇓S(A) Γ
′
R [G]

Γ′P, Γ ` fM ⇓S(M) Γ
′
M

Γ′P, Γ ` fE ⇓S(I?cf)
�cf

∀G ∈ fC. ∃E . Γ′P, Γ ` G ⇓S(A+M) E

Γ ` f ⇓ (Γ′, �cf)

Figure 5.11: Semantics of symbolic states

110

5.6 Proving the Validator Correct

may need to consult ΓEnv to handle operands that are relative to the stack pointer or
a global variable.

• The ⇓M rules map memory expressions to concrete values.

• The ArithEmpty and MemEmpty rules map the dummy expression • to an arbitrary
arithmetic value (1), or to an arbitrary memory (the initial memory). This is so we
can check that all encountered expressions are evaluable; their actual values are
immaterial.

• The ⇓B rules map predicate expressions to Boolean values (true and false). In the
Pred rule, evaluating E1 opc E2 returns an option type because E1 or E2 might be an
invalid pointer.

• The rules for ∧ and ∨ are designed to produce a lazy semantics. This is necessitated
by the fact that they originate from if-statements in the source program, which must
be evaluated lazily. In particular, if �1 evaluates to false and �2 is unevaluable, then
we need �1 ∧ �2 to evaluate to false, not to be unevaluable.

• The PredExpr rule is for evaluating a value summary B of type S(C). It finds an
entry (�, 4) for which the guard � evaluates to true in the final state (% f), and
then evaluates 4 at type C . Value summaries are constructed so that the guards are
exhaustive and mutually exclusive, so there will always be exactly one such entry.

5.6.2 Establishing the chain of simulations

Now that we have a semantics for symbolic states, we can define the required forward
simulation relation, 0 { 1, where 0 and 1 are both blocks, or both symbolic states, or one
of each.

Definition 5.1 (Forward lock-step simulation diagram). For every execution of 0, there
exists an execution of 1 that, when starting from a matching initial state, results in a
matching final state.

0 { 1 , ∀Γ1, Γ′1, Γ2, �cf . Γ1 ` 0 ⇓ (Γ′1, �cf) ∧ Γ1 ∼ Γ2 =⇒ ∃Γ′2 . Γ2 ` 1 ⇓ (Γ′2, �cf) ∧ Γ′1 ∼ Γ′2

First, we show that the forward simulation is transitive.

111

5 Verified Hyperblock Scheduling

Lemma 5.2 (Transitivity of the forward simulation).

∀� � �. � { � ∧ � { � =⇒ � { � (5.10)

The correctness of the scheduler can then be stated in terms of the results of the equival-
ence check. We want to prove that given an input block � , and given the scheduled block
�par, that � { �par when their respective symbolic states are equivalent, i.e. � # ≈ � #

par.
We can split up this work into three main steps, first we show that symbolic execution
is sound and complete with respect to the semantics given to the symbolic block and the
input programs. Next, we need to show that the equivalence check of two symbolic states
is correct, and therefore implies equivalent behaviour of the symbolic states.

First, we need to show that symbolic execution is sound and complete, meaning that a
behaviour is a valid behaviour of the input program if and only if it is also a valid behaviour
of the symbolic state. Both directions are needed, because we need to show that any
behaviour of the pre-scheduling hyperblock � is a behaviour of its symbolic state � #,
and also that once we have a behaviour of the symbolic state � #

par associated with the
scheduled hyperblock �par, that this will also be the behaviour of �par itself. The former is
a soundness property, whereas the latter is a completeness property. It remains to construct
the chain � { � # { � #

par { �par. The three steps of that chain are captured by the
following three lemmas.

Lemma 5.3 (Soundness of symbolic execution). For every execution of a block � , there
exists an equivalent execution of its symbolic state � #. That is: for all � , we have � { � #.

Proof Sketch. By induction on the execution semantics of � . �

Lemma 5.4 (Symbolic refinement implies behavioural refinement). For all f, f′, we have
f & f′ =⇒ f { f′.

Proof Sketch. For expressions this is just syntactic equality, while for value summaries this
comes down to proving the correctness of the SAT solver. �

Lemma 5.5 (Completeness of symbolic execution). For every execution of the symbolic
state � #

par, there exists an equivalent execution of block �par. That is: for all �par, we have
� #

par { �par.

Proof Sketch. Completeness requires a bit more work, because we are given the final
symbolic state and need to show that the whole block that generated it produces the same

112

5.6 Proving the Validator Correct

result. First we show that any instruction in the original block necessarily produces a
value, which follows from the semantics of encountered expressions. From this, we can
show that the execution of �par in the current context must produce a state. Next, we
use lemma 5.3 to show that � #

par must produce a state that is equivalent to �par. Finally,
because our semantics of symbolic states is deterministic, we can show that this state must
be unique, therefore they must be equivalent. �

Finally, we can show the correctness of the verified scheduling implementation.

Theorem 5.6 (Scheduler Correctness). Whenever � #
par is a symbolic refinement of � #, there

is a forward simulation from � to �par. That is: for all � , �par, we have � # & � #
par =⇒

� { �par.

Proof. This follows from lemmas 5.3 to 5.5 and the transitivity of{. �

5.6.3 Managing complexity in the proof

The proof of theorem 5.6, together with the necessary additions to the Vericert back end, is
as large as original Vericert’s whole correctness proof. If one then adds the proofs of the
if-conversion pass and the changes that had to be made to existing passes, Vericert with
hyperblock scheduling has 16681 sloc of Coq specifications and 17426 sloc of Coq proofs,
making it 3× larger than the original Vericert implementation. It was therefore particularly
important to take steps to manage the proof’s complexity, primarily by breaking it up into
reusable lemmas.

A substantial portion of the proof involves reasoning about the U function for symbol-
ically executing instructions. As shown in figure 5.10, the definition of this function is
naturally broken down into smaller state-updates using the applicative interface for value
summaries, <∗> (from equation (5.6)). Accordingly, it is desirable to formulate lemmas
that follow the same structure. For instance, if we want to show some property holds
for � <∗> - , we would like a lemma that breaks this down into some related properties
holding for � and - separately.

However, it is not possible to reason about the behaviour of value summaries like
{ (true, (+)) } in isolation, because our current semantics of symbolic states (figure 5.11)
gives no meaning to functions such as (+). Our solution is to extend the semantics with a

113

5 Verified Hyperblock Scheduling

rule that can handle any value summary.

PredExprIdentity
(�, 4) ∈ B % f ` � ↓ true

% f ` B ⇓I 4

This rule achieves this by making no attempt to evaluate the expression 4 that it selects
from the value summary, and instead simply returns it. (In contrast, PredExpr demands
that 4 can be evaluated to a value E .) Hence we call this the identity semantics for the
value summary. By using identity semantics, it becomes possible to formulate lemmas that
capture the behaviour of <∗>, such as:

(% f ` � ⇓I 4) ∧ (% f ` - ⇓I 4′) =⇒ % f ` (� <∗> -) ⇓I 4 (4′)

We found that only once we were able to formulate lemmas like these did the proof
become feasible. Without them, it involved a number of special cases that was simply
unworkable.

5.7 Related Work

Themost closely related works to ours are those by Tristan and Leroy [2008] and by Six et al.
[2022], so this section begins by recapping our main points of similarity and difference.

Tristan and Leroy [2008] were the first to propose adding scheduling to a verified
compiler, and we adopt their method for validating schedules – running symbolic execution
before and after scheduling and comparing the resultant symbolic states. Their scheduler
only reorders instructions, so syntactic equality suffices for comparing symbolic states,
whereas our scheduler can also modify instructions (by manipulating predicates). This
means that our state comparisons are more involved, and we turn to a SAT solver to help
resolve them (section 5.5.2). Tristan and Leroy also devised the use of constraints to prevent
the scheduler introducing undefined behaviour; we adopt this technique too, taking care
to extend it to handle predicates in such a way that valid schedules can still be validated
(section 5.5.4). We remark that a direct empirical comparison with Tristan and Leroy’s
work is not feasible because their method was implemented in an old version of CompCert
and was not incorporated into its main branch.

Six et al. [2022] formalise superblock scheduling, which is a restricted form of trace

114

5.8 Validated three-valued Logic Using an SMT Solver

predicate
expression

expression
hashing

three-valued
predicate atomisation

array-based
SMT formula

SMT solver
veriT proof witness

SMTCoq checker yes/no

Figure 5.12: Validation of predicate expressions using three-valued logic. An external
SMT solver is used to generate a proof witness, which is then given to a formally verified
proof witness checker by SMTCoq. The result is then ‘yes’ if the formula always holds,
and ‘no’ otherwise.

scheduling that is well-suited for VLIW processors. Hyperblock scheduling is more general
than superblock scheduling and is well-suited to our application domain, HLS. Six et al.’s
scheduler reorders instructions, and also splits instructions up where it is advantageous to
do so, so comparing symbolic states is more involved than it was for Tristan and Leroy.
A SAT solver was still not required because there are no predicates to reason about. A
direct empirical comparison between our scheduler and Six et al.’s is difficult because
Six et al.’s is based on an incompatible fork of CompCert called CompCert KVX. The
final compiler targets are also wildly different, meaning the schedulers would have to be
modified extensively to be comparable and share a back end.

5.8 Validated three-valued Logic Using an SMT Solver

This section describes the implementation and proof of the validated three-valued logic
solver using an external proof-generating SMT solver. The goal of this validator is to
be able to prove the equivalence of predicate expressions, which as noted in section 5.5
requires three-valued logic. Figure 5.12 shows the steps performed by the equivalence
checker, assuming that the predicate expression that is given as input is encoding the
equivalence. We use an SMT solver to generate a proof witness for the formula, which
can be checked by SMTCoq [Armand et al. 2011; Ekici et al. 2017], a formally verified SMT

115

5 Verified Hyperblock Scheduling

proof checker for Coq.

We might therefore want to prove the equivalence for the predicate expression from the
example in section 5.5. (

p1
0 → r2

0 == 0
)
∧

(
¬p1

0 → p2
0) ↔ k,

wherek abbreviates
(
p10 →

((
¬p10 → 1 == 0

)
∧

(
¬¬p10 → r20 == 0

)))
∧

(
¬p10 → p20

)
.

First, this predicate expression is hashed so that it is only composed of variables, and
produces a proper three-valued predicate. In this case, all the atoms of the formula could
be hashed and only referred to as variables, for example 21 ↦→ p10, 22 ↦→ r20 == 0 and
23 ↦→ p20. The same is done tok producing the hashed formula ℎ(k). We are then left with
the following formula:

(21 →Ł 22) ∧ (¬21 →Ł 23) ↔Ł ℎ(k).

This is a pure three-valued logic formula using Łukasiewicz three-valued logic semantics
[Borowski 1970] described in figure 5.13. This interpretation of three-valued logic is chosen
because it allows for tautologies in the logic. In the standard interpretation of three-valued
logic where implication is defined in terms of ∧ and ∨, every expressable formula will
evaluate to 0 if all the variables are set to 0 because 0 → 0 ≡ 0. Łukasiewicz three-valued
logic, on the other hand, has the following behaviour for implication 0 → 0 ≡ 1, meaning
there may be formulas that are tautologies and are always true. This allows us to express
the equivalence between two formulas and prove that if the negation of that statement is
unsatisfiable, that the original statement always needs to hold, meaning the expressions
are equivalent.

The final steps of the validation are therefore to translate the three-valued logic equation
into a form that is accepted by SMTCoq. SMTCoq uses an efficient and compact array
structure to represent the formula, which is split into three main parts, the array for the
atoms of the formula, the array for formula components, and finally the array containing the
formula itself, called the roots. Let us try to prove that the following formula always holds:
(21 →Ł True) ∧ (¬21 →Ł True). The first conceptual step is to translate this three-valued
formula into an SMT formula that implements Łukasiewicz three-valued logic using linear
arithmetic, following the rules from figure 5.13. This would give the following SMT formula,
where all the variables are constrained to be between −1 and 1, i.e. ∀=.−1 ≤ 2= ≤ 1. The
constraint has been left out from the formulation below for simplicity, but would have to

116

5.8 Validated three-valued Logic Using an SMT Solver

rs |=p True ⇓ 1 rs |=p False ⇓ −1 rs |=p Undef ⇓ 0 rs |=p 2 ⇓ rs[2]

rs |=p 2 ⇓ 1 − rs[2]
rs |=p ?1 ⇓ 11 rs |=p ?2 ⇓ 12

rs |=p ?1 ∨ ?2 ⇓ 11 max 12

rs |=p ?1 ⇓ 11 rs |=p ?2 ⇓ 12
rs |=p ?1 ∧ ?2 ⇓ 11 min 12

rs |=p ?1 ⇓ 11 rs |=p ?2 ⇓ 12
rs |=p ?1 →Ł ?2 ⇓ 1min (1 − 11 + 12)

Figure 5.13: Evaluation of three-valued logic predicates, where rs is a valuation from
predicate variables 2 to { 1,−1, 0 }.

be added to the actual formulation. Finally, we check that this formula does not equal 1,
meaning if the SMT solver returns unsat, then the formula should always hold.

(1min (1 − 21 + 1)) min (1min (1 − (1 − 21) + 1)) ≠ 1.

When translated to the array representation, it would give the following formula in SMTCoq,
where we have the list of atoms 0, which are made up of a boolean true (>) and false
(⊥), in addition to the two atoms that are needed to encode the formula above, namely
1 and the variable 21. Then, the formula is constructed as a list of formulas that either
reference elements earlier in the list or atoms, and encode the formula above. Finally, the
root contains a reference to the formula that should be checked by the SMT solver.

atoms: 0 = [>;⊥; 1; 21]
formulas: 5 = [0[2];0[3]; 5 [0] − 5 [1]; 5 [2] + 5 [0]; 5 [0] min 5 [3];

5 [0] − 5 [2]; 5 [5] + 5 [0]; 5 [0] min 5 [6]; 5 [4] ∧ 5 [7]; 5 [8] ≠ 5 [0]]
roots: A = [5 [9]] .

The original SMT formula can then be passed to an SMT solver to check for unsatisfiab-
ility. This is done using veriT [Bouton et al. 2009], which is well supported by SMTCoq.
The witness, together with the array representation of the formula are then read by the
SMTCoq proof checker, which emits ‘yes’ or ‘no’ depending on if checking the witness
succeeded, in which case the formula that was checked was unsatisfiable or not. This result
can be used to check the equivalence between two predicate expressions at run time and
assume that if the check succeeds, that the predicate expressions can be assumed to be

117

5 Verified Hyperblock Scheduling

equivalent.

5.9 Summary

We have presented the first verified implementations of general if-conversion and hyperb-
lock scheduling, and incorporated them into the Vericert verified HLS tool. The practical
value of this work is that it makes verified HLS practical by validating an industry standard
scheduling algorithm. On the more conceptual side, our work may prove useful to those
implementing other optimisation passes in a verified compiler using solver-powered valid-
ation. For example, this back end was also used to verify the construction of gated-SSA,
where three-valued logic validation was also needed to show that path predicates were
correct [Herklotz et al. 2023].

There are opportunities for further performance improvements by tweaking the if-con-
version heuristics and the implementation of the scheduler. Both of these should be
relatively straightforward because neither affects the correctness proof. Longer term, we
plan to implement further optimisations in Vericert, such as modulo scheduling [Zhang
and Liu 2013], which would enable loops to be pipelined.

118

Hardware Generation6
This chapter describes the final hardware generation step to go from software-like
semantics to hardware Verilog semantics.

Until now the representation of the program has still been in the form of a software program,
with virtual, infinite registers, a program counter, as well as a rich but abstract memory
model. This representation needs to be transformed into a more suitable representation
on which hardware specific transformations can be applied, and which is closer to the
structure of the final Verilog design. The main transformation that takes place is converting
a control-flow graph into a state machine with data path representation, which is also the
structure of the final design. There are various steps involved in this refinement because
of the large gap between control-flow graph semantics and state machine semantics. In
addition to that, additional components, such as an implementation of a memory that can
be efficiently implemented in hardware, need to be added to the hardware to produce a
useful design. Finally, until now programs have only been executing sequentially, whereas
to produce the final hardware one will have to transform the sequential execution of
operations within each state into parallel assignments.

This chapter describes the hardware generation process, starting from RtlPar and
producing a final Verilog design. Figure 6.1 shows the intermediate transformations and in
which section the transformation is described. Section 6.1 describes the first step in the
transformation which separates each sequential block within a state in RtlPar into separate
states that can be addressed using the program counter. This matches the addressing that
the state register would have to do in the hardware design. Next, section 6.2 describes the
generation of Htl, an intermediate language representing the execution of a state machine.
This performs the main transformation from a software representation of the program
into hardware, making the execution of the program more explicit in the design itself
rather than as part of the semantics. Section 6.3 then describes the first hardware-specific
optimisation on the state-machine representation of the hardware by adding a specification

119

6 Hardware Generation

RtlPar
Hyperblock
Destruction RtlSubPar

Htl
Generation Htl

BRAM
insertion

Htl
Forward

SubstitutionHtl
Verilog

GenerationVerilog

6.1 6.2

6.3

6.46.5

Figure 6.1: Hardware generation transformation passes introduced to convert RtlPar to
Verilog.

of a BRAM to the Htl semantics and replacing any explicit reads and writes to the array
representing memory by properly formed reads and writes to the BRAM. Until now, updates
to registers have been specified sequentially, so a forward substitution transformation is
described in section 6.4 to parallelise the updates to registers. Finally, section 6.5 describes
the generation of the final Verilog design, which implements the state-machine that was
specified by Htl, in particular implementing the BRAM that was specified.

6.1 Hyperblock Destruction

RtlPar is a control-flow graph with nodes mapping to hyperblocks. This is useful for the
scheduling proof, as each of these hyperblocks can be compared individually. However, in
the hardware itself, the individual sequential blocks have to be separated into different
states, because within each state the assignments will be performed in parallel. This first
hyperblock destruction transformation separates operations that should execute in different
clock cycles into their own locations in the control-flow graph.

Figure 6.2 shows an example hyperblock destruction transformation, where a new
block is added at location 3 with the contents of the second sequential block, and a goto

instruction is added to the original block leading to this next block. Fresh locations for
new blocks are chosen by keeping track of the greatest location in the current function.

120

6.2 Htl Generation

[[[r1 := r2]];

[[r3 := r4];

[goto 2]]]

[[r1 := r2];

[goto 3]]

[[r3 := r4];

[goto 2]]

1

1

3

hyperblock
destruction

Figure 6.2: Hyperblock destruction transformation splitting up the hyperblock into mul-
tiple locations.

6.1.1 Proof of hyperblock destruction

The proof of hyperblock destruction is relatively simple using a ‘plus’ forward simulation.
Then, for each input state, there are one or more output states returned by the hyperblock
destruction algorithm that should be equivalent to the execution of the input state when
executed sequentially.

6.2 Htl Generation

The main transformation of an HLS tool is the generation of a hardware description
from the list of instructions. Eventually the hardware design will be described using
Verilog, however, to make the transformation more incremental, we first turn the program
represented by a control-flow graph into a program represented by an FSMD. This section
will describe the FSMD language, called Htl, by showing the syntax and semantics of the
language. Then, the transformation from RtlSubPar to Htl is shown, together with an
overview of its correctness proof.

6.2.1 Htl structure and semantics

At a high level, Htl is structured like many other CompCert languages, mapping from
locations to Verilog statements. However, contrary to many other intermediate languages
in CompCert, Htl does not contain any instructions, and its semantics use a smaller state
to perform the execution. For example, the state does not have to contain the program
counter because there is an explicit state register that keeps track of it.

Htl comprises a lot of metadata pointing to important registers, as well as containing a
map from program locations to Verilog statements. The syntax of Htl is shown in figure 6.3.

121

6 Hardware Generation

registers: A, r1, r2, . . . ∈ r

CFG node labels: ! ∈ L ::= N

Verilog statements: +stmnt ∈ Vstmnt

Code: c ∈ L → Vstmnt

Htl: HTL ::= { params : r list;
datapath : L → Vstmnt ;
entrypoint : N;
st : r ;
stk : r ;
stack_size : N;
fin, ret, rst, clk : r ;
ram : BRAM?;
order_wf : st < fin < ret < stk

∧ stk < rst < clk;
ram_wf : ∀A . ram = bAc =⇒ clk < A .raddr ;
params_wf : ∀A ∈ params. A < st }

Figure 6.3: Syntax of Htl.

First, Htl contains a list of parameters, which are additional input registers to the current
module. Next, the datapath contains the code for the state machine, as well as the data
path associated with each state. This is done by mapping program locations, or states, to
Verilog statements Vstmnt , which updates registers as part of the data path, but also updates
to the state. The computation of the next state often relies on the state of registers, which
is why it needs to be performed as part of the data path.

Next, the Htl module contains an entry point, which is the initial starting state of
the st register. After the reset input wire is asserted, the st register will be reset to that
value. The st register is read at every clock tick and determines the next statement that
should be executed from the datapath. As mentioned before, the st register is a physical
representation of the virtual program counter from RtlSubPar and other intermediate
instruction languages. We then also have stack register and an associated stack_size, which
is a Verilog array storing the contents of the stack. Initially, this array will be accessed
directly by operations in the data path, however, section 6.3 describes how these direct
accesses to the array are instead turned into accesses to a BRAM.

We then have a list of input and output control signals, which are used to return a
result by setting the fin flag and assigning the ret register to the result. Next, the rst signal
provides a way to reset the state of the internal state machine. Finally, there is a clk input to
provide the clock to the design. This input is not yet used by the Htl design, as execution

122

6.2 Htl Generation

is still performed using state transitions in the semantics, however, a register is already
allocated for the clock which will be needed by the final Verilog design. The module then
also contains a ram which will be further described in section 6.3, because in the first
translation pass it is initialised to None, and is not used.

Finally, there are three well-formedness criteria which are used to enforce an ordering
between the registers, mainly to be able to show that registers are independent from each
other.

6.2.2 Htl generation algorithm

The generation of Htl is relatively straight-forward, as most instructions have a direct
translation to a Verilog implementation. The Verilog implementation can therefore follow
the semantics of each operation and implement their arithmetic behaviour directly. In
addition to that, because of the hyperblock destruction translation, each block in the
control-flow graph corresponds to a state in the final hardware. First, the translation
of individual instructions is described, followed by the translation of memory. Next the
translation of control-flow statements is described, followed by the translation of the
top-level function.

Translating individual arithmetic instructions

The arithmetic operation is then assigned to the destination register using blocking assign-
ment, so as to preserve the sequential nature of the execution of the code and simplify
the correctness proof. One subtle aspect of the proof is the translation of registers and
predicates into Verilog, because in RtlSubPar these were contained in separate maps,
whereas in Verilog and Htl they need to be combined into one register association map.
This is done by referring to register A in RtlSubPar as register A ′ = 2A in Verilog. Predicate
? , on the other hand, is referred to as predicate ?′ = 2? + 1 in Verilog, thereby combining
both name spaces into one. A short example of a translation from RtlSubPar to Htl is
shown in figure 6.4.

Implementing the Oshrximm instruction Many of the CompCert instructions map well
to hardware, but Oshrximm (efficient signed division by a power of two using a logical shift)
is expensive if implemented naïvely. The problem is that in CompCert it is specified as a
signed division:

123

6 Hardware Generation

[[r1 := r2 * r3]];

[[p1 => r4 := r5];

[[p2 => Stack[r6] = 3];

[goto 2]]

r2 = r4 * r6;

r8 = r3 ? r10 : r8;

if (r5) stack[r12/32'd4] = 32'd3;

state = 32'd2;

Htl generation

Figure 6.4: Simple translation from an RtlSubPar block into an Htl block.

Oshrximm G ~ = round_towards_zero
(G
2~

)
(where G,~ ∈ Z, 0 ≤ ~ < 31, and −231 ≤ G < 231) and instantiating divider circuits in

hardware is well known to cripple performance. Moreover, Vericert does not yet support
pipelined or multi-cycle operations and therefore requires the result of a divide operation
to be ready within a single clock cycle, meaning the divide circuit needs to be entirely
combinational. This is inefficient in terms of area, but also in terms of latency, because it
means that the maximum frequency of the hardware must be reduced dramatically so that
the divide circuit has enough time to finish. It should therefore be implemented using a
sequence of shifts.

CompCert eventually performs a translation from this representation into assembly code
which uses shifts to implement the division, however, the specification of the instruction in
Rtl itself still uses division instead of shifts, meaning this proof of the translation cannot
be reused. In Vericert, the equivalence of the representation in terms of divisions and shifts
is proven over the integers and the specification, thereby making it simpler to prove the
correctness of the Verilog implementation in terms of shifts.

Translating memory

Translating memory operations and the memory itself is one of the trickiest part of the
translation, especially from a correctness point of view, because of the large difference in
behaviour between CompCert memories and their Verilog implementation. At the stage of
Htl generation, a Verilog array is used to represent the stack of the function in RtlSubPar.
The Verilog array is defined as the following:

logic [31:0] stack [STK_LEN-1:0];

This is essentially an array of size STK_LEN of 32-bit integers. This array is therefore
word-addressable. One big difference between C and Verilog is how memory is represented.
Although Verilog arrays use similar syntax to C arrays, theymust be treated quite differently.

124

6.2 Htl Generation

Eventually, this array will have to be replaced by an actual BRAM, which only has a limited
set of read and write ports (one of each in our case). To make loads and stores of words
as efficient as possible, the BRAM needs to be word-addressable, which means that an
entire integer can be loaded or stored in one clock cycle. However, the memory model
that CompCert uses for its intermediate languages is byte-addressable [Blazy and Leroy
2005]. If a byte-addressable memory was used in the target hardware, which is closer to
CompCert’s memory model, then a load and store would instead take four clock cycles,
because the BRAM implemented in hardware can only perform one read and write per
clock cycle. It therefore has to be proven that the byte-addressable memory behaves in the
same way as the word-addressable memory in hardware. Any modifications of the bytes
in the CompCert memory model also have to be shown to modify the word-addressable
memory in the same way. Since only integer loads and stores are currently supported in
Vericert, it follows that the addresses given to the loads and stores will be multiples of four.
Translating from byte-addressed memory to word-addressed memory can then be done by
dividing the address by four.

As shown in figure 6.4, predicated instructions are translated into blocking assignments
of a ternary expression in Verilog. This is the case for all instructions except for the store
instruction, which is translated to a conditional statement. This ensures that the memory
is only modified when the predicate is set. If that were not the case, and the memory was
translated using a ternary statement:

p2 => Stack[r6] = 3 stack[r12/32'd4] = r5 ? 32'd3 : stack[r12/32'd4]

Then, in the case where the predicate p2 is false, that would mean that the statement in
RtlSubPar would not be executed. However, in the generated Verilog, one would have to
execute the statement stack[r12/32'd4], which might not be possible as the register r6 in
RtlSubPar, and the corresponding expression r12/32'd4 in Verilog could be out-of-range
of the stack array. This would therefore mean that there is no way to execute the Verilog
in that case, as one cannot read from the stack when it is out-of-range. Gating it fully with
an if-statement, as shown in figure 6.4, ensures that the Verilog statement can always be
executed, assuming that the RtlSubPar instruction can also be executed. However, this
if-statement can be removed once the direct accesses to the array are translated into reads
and writes to the BRAM interface.

125

6 Hardware Generation

[[p1 => goto 3;

p2 => goto 4;

goto 5;

r1 <= r2 * r3]]

state = r3 ? 32'd3 : state;

state = ~r3 & r5 ? 32'd4 : state;

state = ~r3 & ~r5 ? 32'd4 : state;

r2 = ~r3 & ~r5 ? r4 * r6 : r2;

Htl generation

Figure 6.5: Describing the control flow translation from RtlSubPar to Htl.

Translating control flow instructions

Most control-flow instructions also map nicely to hardware, however, the way predicated
control-flow instructions are handled differs a bit between RtlSubPar and Htl. The main
problem is that when execution in a RtlSubPar block reaches a control-flow instruction
that is executed, then it will exit the block immediately. This is not possible in the Htl block,
because the next state is determined based on the value of the state register at the start of
the next clock cycle. Naïvely translating the control-flow instructions into assignments
to the state register would produce incorrect state transitions in Htl, because a later
control-flow instruction could overwrite a previous instruction. As a remedy, we keep
track of the current negated exit condition, which accumulates throughout the translation
of a block. Figure 6.5 demonstrates this on a chain of control-flow operations. First, the
condition of the ternary statement in Verilog corresponds to the predicate in the block,
however, these quickly diverge. For the next control-flow instruction, the condition of the
ternary statement is set to be the translated predicate associated with p2, anded together
with the current negated exit condition which is ~r3. The current negated exit condition is
then updated to be ~r3 & ~r5, which is then the ternary expression condition assigned to
the last state update.

To avoid all side-effects after a gated control-flow instruction, regular instructions will
have to be gated by the same negated control-flow predicate, but do not themselves modify
the value of the negated control-flow predicate for any following instructions.

Finally, return instructions are translated to an assignment of 1 to the Htl finish register,
signalling that the hardware has finished computing, and the result that should be returned
is assigned to the return register.

Translating the top-level function

Each RtlSubPar function is translated separately, and within each function, each block
is translated to a Verilog statement. In addition to that, new registers are created for the
various control signals and registers in Htl, ensuring that they follow the ordering present

126

6.2 Htl Generation

in the Htl specification. The top-level translation also needs to ensure that it is compiling
a translation unit with the main function, as linking with other translation units is not
supported by the Verilog semantics. As function calls are not supported, only the main

function is needed, because all other functions are inlined.

6.2.3 Htl generation correctness proof

There is quite a large mismatch between the Htl semantics and the RtlSubPar semantics.
This is mainly due to the following two points:

• As already mentioned in section 6.2.2, because the memory model in our Htl se-
mantics is finite and concrete, but the CompCert memory model is more abstract and
infinite with permissions that define the bounds of the memory block, the equival-
ence of these models needs to be proven. Moreover, our memory is word-addressed
for efficiency reasons, whereas CompCert’s memory is byte-addressed.

• Second, the Htl semantics operates quite differently to the usual intermediate
languages in CompCert. All the CompCert intermediate languages use a map from
control-flow nodes to instructions. An instruction can therefore be selected using
an abstract program pointer. Meanwhile, in the Htl semantics the whole design is
executed at every clock cycle, because hardware is inherently parallel. The program
pointer is part of the design as well, not just part of an abstract state. This makes the
semantics of Htl simpler, but comparing it to the semantics of Rtl becomes more
challenging, as one has to map the abstract notion of the state to concrete values in
registers.

As Htl is quite far removed from RtlSubPar, this first translation is the most involved
and therefore requires a larger proof, because the translation from RtlSubPar instructions
to Verilog statements needs to be proven correct in this step. Instead of defining small-step
semantics for each construct in Verilog, the semantics are defined over one clock cycle
and mirror the semantics defined for Verilog. Lemma 6.1 shows the result that needs to be
proven in this subsection.

Lemma 6.1 (Forward simulation from RtlSubPar to Htl). Writing tr_htl for the transla-
tion from RtlSubPar to Htl, we have:

∀2, ℎ,B ∉ Wrong, tr_htl(2) = bℎc ∧ 2 ⇓ B =⇒ ℎ ⇓ B .

127

6 Hardware Generation

Proof sketch. I prove this lemma by first establishing a specification of the translation
function tr_htl that captures its important properties, and then splitting the proof into
two parts: one to show that the translation function does indeed meet its specification,
and one to show that the specification implies the desired simulation result. This strategy
is in keeping with standard CompCert practice.

�

Forward simulation proof of translation

To prove that the translation described in section 6.2 results in the desired forward simula-
tion, we must first define a relation that matches each RtlSubPar state to an equivalent
Htl state. This relation also captures the assumptions made about the RtlSubPar code
that we receive from CompCert. These assumptions then have to be proven to always hold
assuming the Htl code was created by the translation algorithm. Some of the assumptions
that need to be made about the RtlSubPar and Htl code for a pair of states to match are:

• The RtlSubPar register file ' needs to be ‘less defined’ than the Htl register map ΓA

(written ' ≤ ΓA). This means that all entries should be equal to each other, unless a
value in ' is undefined, in which case any value can match it.

• There is a single allocation that was performed in RtlSubPar, with the size of the
allocation being equal to the stack size of the main function, which was performed
when the main function was initially called; that is: |" | ≤ main.stacksize.

• The BRAM values represented by each Verilog array in Γ0 need to match the RtlSub-
Par function’s stack contents, which are part of the memory " ; that is: " ≤ Γ0 .

• The state is well formed, which means that the value of the state register matches
the current value of the program counter; that is: pc = ΓA [st].

We also define the following set I of invariants that must hold for the current state to
be valid:

• all pointers in the program use the stack as a base pointer,

• any loads or stores to locations outside of the bounds of the stack result in undefined
behaviour (and hence they do not need to be handled),

128

6.3 BRAM insertion

• rst and fin are not modified and therefore stay at a constant 0 throughout execution,
and

• the stack frames match. As no function calls are performed, as they are all inlined,
the stack frames will always be empty.

We can now define the simulation diagram for the translation. The RtlSubPar state
can be represented by the tuple (',", pc), which captures the register file, memory, and
program counter. The Htl state can be represented by the pair (ΓA , Γ0), which captures
the states of all the registers and arrays in the module. Finally, I stands for the other
invariants that need to hold for the states to match.

Lemma 6.2. Given the RtlSubPar state (',", pc) and the matching Htl state (ΓA , Γ0),
assuming one step in the RtlSubPar semantics produces state ('′, "′, pc′), there exist one or
more steps in the Htl semantics that result in matching states (Γ′A , Γ′0). This is all under the
assumption that the specification spec_htl holds for the translation.

',", pc ΓA , Γ0

'′, "′, pc′ Γ′A , Γ
′
0

I ∧ (' ≤ ΓA) ∧ (" ≤ Γ0) ∧ (pc = ΓA [st]) ∧ |" | ≤ main.stacksize

+
I ∧ ('′ ≤ Γ′A) ∧ ("′ ≤ Γ′0) ∧ (pc′ = Γ′A [st]) ∧ |"′| ≤ main.stacksize

Proof sketch. This simulation diagram is proven by induction over the operational semantics
of RtlSubPar, which allows us to find one or more steps in the Htl semantics that will
produce the same final matching state. The ‘plus’ simulation diagram is needed because the
return instruction is translated into register assignments, which first need to be executed
normally and a separate step is needed to move to the return state. �

6.3 BRAM insertion

The simplest way to implement loads and stores in Vericert would be to access the Verilog
array directly from within the data path as is currently the case after the Htl generation.
This would be correct, but when a Verilog array is accessed at several program points, the
synthesis tool is unlikely to detect that it can be implemented as a BRAM, and will resort

129

6 Hardware Generation

// BRAM interface

(* ram_style = "block" *)

logic [31:0] stack [1:0];

always @(negedge clk)

if ({u_en != en}) begin

if (wr_en) stack[addr] <= d_in;

else d_out <= stack[addr];

en <= u_en;

end

Figure 6.6: Verilog implementation of the BRAM interface generated by Vericert.

to using registers instead, increasing the circuit’s area and affecting performance. This is
because reads and writes to a BRAM need to follow a certain pattern to be suitable to be
replaced by BRAM reads and writes. For example, the synthesis tool will have to check
that the array is only written to once per clock cycle, and is only read from once as well.
To avert this, we arrange that the data path does not access memory directly, but instead
accesses the memory through the BRAM interface. By factoring all the memory accesses
out into a separate interface, we ensure that the underlying array is only accessed from
a single program point in the Verilog code, and thus ensure that the synthesis tool will
correctly infer a BRAM block.1

There are two interesting parts to the inserted BRAM interface, where the final Verilog
implementation is shown in figure 6.6. Firstly, the memory updates are triggered on the
negative (falling) edge of the clock, out of phase with the rest of the design which is
triggered on the positive (rising) edge of the clock. The advantage of this is that instead of
loads and stores taking three clock cycles and two clock cycles respectively, they only take
two clock cycles and one clock cycle instead, greatly improving their performance. Using
the negative edge of the clock is supported by synthesis tools and FPGAs, but in general
it reduces the time that is available for arithmetic operations in the positive edge of the
clock, making it harder to schedule operations.

Secondly, the logic in the enable signal of the BRAM (en != u_en) is also atypical in
hardware designs. Enable signals are normally manually controlled and inserted into the
appropriate states, by using a check like the following in the BRAM: en == 1. This means
that the BRAM only turns on when the enable signal is set. However, to make the proof
simpler and avoid reasoning about possible side effects introduced by the BRAM being
enabled but not used, a BRAM which disables itself after every use would be ideal. One
1Interestingly, the Verilog code shown for the BRAM interface must not be modified, because the synthesis

tool will only generate a BRAM when the code matches a small set of specific patterns.

130

6.3 BRAM insertion

method for implementing this would be to insert an extra state after each load or store
that disables the BRAM, but this extra state would eliminate the speed advantage of the
negative-edge-triggered BRAM. Another method would be to determine the next state
after each load or store and disable the BRAM in that state, but this could quickly become
complicated, especially in the case where the next state also contains a memory operation,
and hence the disable signal should not be added. The method I ultimately chose was to
have the BRAM become enabled not when the enable signal is high, but when it toggles
its value. This can be arranged by keeping track of the old value of the enable signal in
en and comparing it to the current value u_en set by the data path. When the values are
different, the BRAM gets enabled, and then en is set to the value of u_en. This ensures that
the BRAM will always be disabled straight after it was used, without having to insert or
modify any other states.

This transformation pass therefore translates direct accesses to the Verilog array in Htl
and replaces them by signals that access the BRAM interface in a separate always-block.
The translation is performed by going through all the instructions and replacing each load
and store expression in turn. Stores can be replaced by the necessary wires to the BRAM
directly. Loads are a little more subtle: loads that use the BRAM interface take two clock
cycles where a direct load from an array takes only one, so this pass inserts an extra state
after each load. The scheduling algorithm described in section 5.4 can already take this
into account as well, and can ensure that the next clock cycle after a load does not perform
a load or a store, however, this transformation currently does not take advantage of that.

6.3.1 BRAMmodel semantics

Figure 6.7 gives an example of how the BRAM interface behaves when values are loaded
and stored. There is a wr_en signal that determines if a load or store is being performed.
Then, if at the falling edge u_en and en are different, the read or write at address addr is
executed. At the same time, the value of u_en is then assigned to en, which would disable
it if there is no other action by the data path on the next clock cycle. However, if the data
path toggles the value of u_en on the next clock cycle, the BRAM would be enabled again.

6.3.2 BRAM insertion and correctness proof

Htl can only represent a single state machine, so we must model the BRAM abstractly to
reason about the correctness of replacing the direct read and writes to the array by loads

131

6 Hardware Generation

clk

u_en u_en u_en

addr 3

wr_en

en u_en u_en

d_out 0xDEADBEEF

r 0xDEADBEEF

1 2 3

(a) Timing diagram for loads. At time 1, the
u_en signal is toggled to enable the BRAM.
At time 2, d_out is set to the value stored at
the address in the BRAM, which is finally
assigned to the register r at time 3.

clk

u_en u_en u_en

addr 3

wr_en

d_in 0xDEADBEEF

en u_en u_en

stack[addr] 0xDEADBEEF

1 2

(b) Timing diagram for stores. At time 1, the
u_en signal is toggled to enable the BRAM,
and the address addr and the data to store
d_in are set. On the negative edge at time 2,
the data is stored into the BRAM.

Figure 6.7: Timing diagrams showing the execution of loads and stores over multiple clock
cycles.

Idle
Γr [A .en] = Γr [A .u_en]
((Γr, Γa),Δ, A) ↓ram Δ

Load
Γr [A .en] ≠ Γr [A .u_en] Γr [A .wr_en] = 0

((Γr, Γa), (Δr,Δa), A) ↓ram (Δr [A .en ↦→ A .u_en, A .d_out ↦→ (Γa [A .mem]) [A .addr]],Δa)
Store

Γr [A .en] ≠ Γr [A .u_en] Γr [A .wr_en] = 1

((Γr, Γa), (Δr,Δa), A) ↓ram (Δr [A .en ↦→ A .u_en],Δa [A .mem ↦→ (Γa [A .mem]) [A .addr ↦→ A .d_in]])

Figure 6.8: Specification for the memory implementation in Htl, where A is the BRAM,
which is then implemented by equivalent Verilog code.

132

6.3 BRAM insertion

and stores to a BRAM. The specification for the BRAM is shown in figure 6.8, which defines
how the BRAM A will behave for all the possible combinations of the input signals. This
specification is part of the Htl semantics and runs in parallel to the state machine. However,
as the BRAM is triggered by the falling edge of the clock, it will execute in between standard
clock cycles, and a merge of the association maps is performed in between each one.

From implementation to specification

The first step in proving the simulation correct is to build a specification of the translation
algorithm. There are five possibilities for the transformation of an instruction. For each
Verilog statement in the map at location 8 , the statement is either a load, a store, a predicated
load, a predicated store, or neither. The load, store, predicated load and predicated store
is translated to the equivalent representation using the BRAM specification and all other
instructions are left intact. The specification of the translation is shown in figure 6.9, where
st is state register, A is the BRAM, 3 is the data path map of the original Htl, 3′ is the data
path of the translated Htl, and 8 is the current state. The newly inserted state is denoted
by =, which only applies to the translation of loads. The specification shown in the figure
relates the original Htl data path 3 with the data path 3′ in which BRAM accesses were
inserted. For each type of direct memory access in the original Htl, there is a rule relating
it to the translated data path in terms of BRAM control signals. Note that the translation is
quite strict, and the only statements that are allowed to be in the Htl state are the ones
that are listed in the relation. Ideally, arbitrary statements could be placed before or after
the direct memory accesses, however, proving that the translation is semantics preserving
is more difficult due to the fact that the BRAM stores values in the next negative edge
and loads values in the next cycle. One would therefore have to show that there are no
conflicting direct memory accesses in the state.

Conditional loads and stores are also handled, by adding logic to the enable signal which
inhibits the flip of the A .u_en when the condition does not hold. This is implemented by
the following logic, where ⊕ is the xor operation:

A .u_en = (2 != 32'b0) ⊕ A .u_en;

If 2 is false, then this means that 32'b0!=32'b0 evaluates to 1'b0, and 1'b0⊕A .u_en = A .u_en,
meaning the value of A .u_en remains unchanged. However, if 2 evaluates to true, then the
xor operation acts like a toggle, meaning the memory is activated normally.

133

6 Hardware Generation

Store Transl

3 [8] =
(
A .mem[41] = 42;

st = 43;

)
3′[8] =

©«
A .u_en = ¬A .u_en;
A .wr_en = 1;
A .d_in = 42;

A .addr = 41;
st = 43;

ª®®®®®¬
spec_ram_tr st A 3 3′ 8 =

Predicated Store Transl

3 [8] =
(
if(2) A .mem[41] = 42;

st = 43;

)
3′[8] =

©«
A .u_en = (2 != 32'b0) ⊕ A .u_en;
A .wr_en = 1'b1;

A .d_in = 2 ? 42 : A .d_in;
A .addr = 2 ? 41 : A .addr;
st = 43;

ª®®®®®¬
spec_ram_tr st A 3 3′ 8 =

Load Transl

3 [8] =
(
Ad = A .mem[41];

st = 42;

) 3′[8] =
©«
A .u_en = ¬A .u_en;
A .wr_en = 1'b0;

A .addr = 41;
st = =;

ª®®®¬
3′[=] =

(
Ad = A .d_out;
st = 42;

)
spec_ram_tr st A 3 3′ 8 =

Predicated Load Transl

3 [8] =
(
Ad = 2 ? A .mem[41] : Ad;

st = 42;

) 3′[8] =
©«
A .u_en = (2 != 32'b0) ⊕ A .u_en;
A .wr_en = 1'b0;

A .addr = 2 ? 41 : A .addr;
st = =;

ª®®®¬
3′[=] =

(
Ad = 2 ? 41 : A .d_out;
st = 42;

)
spec_ram_tr st A 3 3′ 8 =

Default Transl
(∀41 42 43. 3 [8] ≠ (A .mem[41] = 42; st = 43))

(∀2 41 42 43. 3 [8] ≠ (if(2) A .mem[41] = 42; st = 43))
(∀Ad 41 42. 3 [8] ≠ (Ad = A .mem[41]; st = 42))

(∀2 Ad 41 42. 3 [8] ≠ (Ad = 2 ? A .mem[41] : Ad; st = 42)) 3 [8] = 3′[8]
spec_ram_tr st A 3 3′ 8 =

Figure 6.9: Memory transformation specification.

134

6.3 BRAM insertion

This specification has to be shown to hold with respect to the top-level BRAM insertion
transformation function tr_ram_ins. We therefore need to show that the following lemma
holds so that the correctness theorem can only reason about the cases in the specification.
This is especially useful in this transformation, because the specification states that each
statement in the original Htl only has five cases it could be transformed into, and this is
independent of any other statement in the data path.

Lemma 6.3 (BRAM insertion specification holds). We need to show that given that the
translation succeeded, that the specification of the translation holds for every statement in the
data path.

∀ℎ ℎ′. tr_ram_ins(ℎ) = (ℎ′) ∧ ℎ′.ram = bAc =⇒
∀8 . ∃=. spec_ram_tr ℎ.st A ℎ.datapath ℎ′.datapath 8 =

From specification to simulation

Another simulation proof is performed to prove that the insertion of the BRAM is a forward
simulation. As in lemma 6.2, we require some invariants that always hold at the start and
end of the simulation. The invariants needed for the simulation of the BRAM insertion
are quite different to the previous ones, so we can define these invariants Ir to be the
following:

• The association map for arrays Γa always needs to have the same arrays present, and
these arrays should never change in size.

• The BRAM should always be disabled at the start of each simulation step. (This is
why self-disabling BRAM is needed.)

The other invariants and assumptions for defining two matching states in Htl are quite
similar to the simulation performed in lemma 6.2, such as ensuring that the state registers
have the same value, and that the values in the registers are less defined. In particular, the
less defined relation matches up all the registers, except for the new registers introduced
by the BRAM.

Lemma 6.4 (Forward simulation from Htl to Htl after inserting the BRAM). Given an
Htl program, the forward-simulation relation should hold after inserting the BRAM and
wiring the load, store, and control signals.

135

6 Hardware Generation

∀ℎ, ℎ′, B ∉ Wrong. tr_ram_ins(ℎ) = ℎ′ ∧ ℎ ⇓ B =⇒ ℎ′ ⇓ B .

Proof sketch. By using the specification defined earlier, one can handle the five transforma-
tion cases independently. The trickiest part of the proof is dealing with the rearrangement
of the order in which assignments are performed, as well as the different times at which
the memory is accessed. This transformation requires a ‘plus’ simulation diagram because
the loads require two cycles to complete. �

6.4 Register Forward Substitution

Until now, only blocking assignment has been used to assign variables sequentially, being
more faithful to the instructions provided by the input language. The transformation is
shown in figure 6.10, and it turns sequential, blocking assignment into parallel, nonblocking
assignment by substituting register definitions within a state. Each assignment in the
translated block is independent from the other blocks, meaning each assignment can be
executed in parallel. Note that the state is assigned twice using nonblocking assignment.
In that case, only the last nonblocking assignment is kept. In addition to that, r2 is no
longer used in the block, as it has been replaced by its definition in the assignment to
r8. It is likely that r2 is not used in any other block either, in which case it should be
removed. This is not performed by this transformation pass, but in practice synthesis tools
can reliably remove a register that is assigned and never referenced in the design. There
are two reasons why this transformation is needed.

1. In a clocked always-block, nonblocking assignment should be used for all registers
that could interact with other always-blocks. As we have a BRAM block in a separate
always-block, we should at least use nonblocking assignment for the registers that
interact with memory. In this case, it is not actually required, because the BRAM
is executing on the negative edge of the clock, however, if it is ever replaced by a
BRAM that executes on the positive edge of the clock, or supplemented with other
functional units that execute on the positive edge of the clock, then any registers
communicating with those blocks will need to use nonblocking assignment.

2. Some synthesis tools do not seem to be able to optimise the designs generated by
Vericert with blocking assignments, as they seem to remove less unused registers,

136

6.4 Register Forward Substitution

state = 32'd2;

r2 = r4 * r6;

r8 = r2 + r10;

state = r3 ? 32'd3 : state;

state <= 32'd2;

r2 <= r4 * r6;

r8 <= {r4 * r6} + r10;

state <= r3 ? 32'd3 : 32'd2;

forward
substitution

Figure 6.10: Simple example of the forward substitution transformation.

1 // assume: Γ0r [state ↦→ ∅; r2 ↦→ ∅; r8 ↦→ ∅]
2 state = 32'd2; // Γ1r = Γ0r [state ↦→ 32'd2] ,Δ1

r = Δ0
r

3 r2 = r4 * r6; // Γ2r = Γ1r
[
r2 ↦→ Γ0r [r4] * Γ0r [r6]

]
,Δ2

r = Δ0
r

4 r8 = r2 + r10; // Γ3r = Γ2r
[
r8 ↦→ (Γ0r [r4] * Γ0r [r6]) + Γ0r [r10]

]
,Δ3

r = Δ0
r

5 state = r3 ? 32'd3 : state; // Γ4r = Γ3r
[
state ↦→ Γ0r [r3] ? 32'd3 : 32'd2

]
,Δ4

r = Δ0
r

state <= 32'd2; // Γ′1r = Γ′0r ,Δ
′1
r = Δ′0

r [state ↦→ 32'd2]
r2 <= r4 * r6; // Γ′2r = Γ′0r ,Δ

′2
r = Δ′1

r

[
r2 ↦→ Γ′0r [r4] * Γ′0r [r6]

]
r8 <= {r4 * r6} + r10; // Γ′3r = Γ′0r ,Δ

′3
r = Δ′2

r

[
r8 ↦→ (Γ′0r [r4] * Γ′0r [r6]) + Γ′0r [r10]

]
state <= r3 ? 32'd3 : 32'd2; // Γ′4r = Γ′0r ,Δ

′4
r = Δ′3

r

[
state ↦→ Γ′0r [r3] ? 32'd3 : 32'd2

]

forward substitution

Figure 6.11: Simple forward substitution transformation together with the runtime value of
the blocking assignment associationmap (Γr) and the nonblocking assignment association
map (Δr).

resulting in slightly lower maximum frequency and slightly larger area.2 In the
case of the example given in figure 6.10, it seems like some synthesis tool versions
do not remove r2 when it is referenced in the assignment to r8 and not referenced
anywhere else in the design. This should not be the case as in this example r2 should
just become a wire.

The transformation is performed by traversing each block and storing for each register
the expression that is being assigned to it. If the same register is encountered multiple
times, the expression being assigned is always substituted first and then replaces the
current mapping from register to expression. As the BRAM insertion already removed all
the load and store operations in the data path, only regular register assignments need to

2This seems to be the case with Vivado 2017.1 and seems to have been fixed by Vivado 2023.1.

137

6 Hardware Generation

be accounted for.
First, I describe the substitution of expressions in definition 6.1, and then I describe the

substitution of statements in definition 6.2.

Definition 6.1 (Substitute expressions). Expressions are substituted based on a map C

from registers to Verilog expressions. Each register within the expression is replaced by
the expression in the map.

SubstReg
C [A] = b4′c

subst_expr C A = 4′

SubstRegNotIn
C [A] = None

subst_expr C A = A

SubstBinaryOp

subst_expr C (41 + 42) = subst_expr C 41 + subst_expr C 42

· · ·

Definition 6.2 (Substitute statements). Only two types of statements need to be substituted,
blocking assignments and sequential composition of statements. For blocking assignments,
substitution means that it is turned into nonblocking assignment by substituting the
expression with the current expression substitution map C , in addition to updating the map
itself with a new expression mapping for the register A .

SubstBlocking
4′ = subst_expr C 4

subst_stmnt C (A = 4) = bA <= 4′, C [A ↦→ 4′]c

SubstSeq
subst_stmnt C B1 = bB′1, C ′c subst_stmnt C ′ B2 = bB′2, C ′′c

subst_stmnt C (B1; B2) = bB′1; B′2, C ′′c

SubstOther
(∀B1 B2. B ≠ B1; B2) (∀A 4. B ≠ A = 4)

subst_stmnt C B = None

It might seem restrictive to only support sequential composition of statements and
blocking assignment, but those are the only constructs that are generated by the Htl
generation. Supporting additional statements would not require a significant change to the

138

6.4 Register Forward Substitution

transformation. Even adding support for nonblocking assignment in the input statement
should be safe, as long as the expressions are correctly substituted, and are not added to the
expression substitution map C . The main property one would have to check about the input
statement is that a register is not assigned using blocking assignment after a nonblocking
assignment, as otherwise the input and output statement would have different results.

6.4.1 Forward substitution correctness proof

Themain lemma that is needed to prove the forward simulation correct is that the execution
of statements in each state results in equivalent merged association maps from the blocking
and nonblocking assignments. Figure 6.11 shows the forward substitution example with
annotated runtime states to explain the proof and invariants needed to prove the forward
simulation for this transformation. The correctness argument in figure 6.11 corresponds to
showing that Γ4r // Δ0

r = Γ′0r // Δ′4
r .

Lemma 6.5 (Equivalence of statement substitution). After merging the maps of a statement
B and the substituted statements B′, the contents of the merged blocking association map Γ′

and nonblocking association map Δ′ after executing B should be equivalent to merging the
maps Γ′′ and Δ′′ after executing B′.

subst_stmnt C B = bB′, C ′c =⇒
((Γ,Δ), B) ↓stmnt (Γ′,Δ′) =⇒
((Γ,Δ), B′) ↓stmnt (Γ′′,Δ′′) =⇒
Γ′ // Δ′ = Γ′′ // Δ′′

Proof sketch. By induction on the definition of a statement, by applying lemma 6.6 to show
equivalence of expressions within the statements. �

There are twomain invariants that have to be maintained when proving the lemma above,
which relates the run time association map used to execute expressions encountered during
the execution of the original statement with the contents of the expression substitution map
C . The first invariant, described in definition 6.3, states that the evaluation of an expression
in the substitution map C should correspond to the value associated with that register in the
current execution of the block. For example, in figure 6.11 after line 3, the substitution map
would contain the entry: C [r2 ↦→ C [r4] * C [r6]]. Executing this expression C [r4] * C [r6]
with the initial blocking assignment at the start of the statement Γ0r should be the same as

139

6 Hardware Generation

indexing the current run time association map at the register r2, i.e. Γ2r [r2], which is the
case.

Definition 6.3 (In substitution map). If the register A is in the substitution map C and it
maps to expression 4 , then the value in the current association map Γr should be the same
as the value obtained from evaluating expression 4 with the initial association map Γ0r .

in_subst_map Γ0r Γr Γa C ,

∀A 4. C [A] = b4c =⇒ ∃E . ((Γ0r , Γa), 4) ↓expr E ∧ Γr [A] = bEc

Definition 6.4 describes the relationship between the initial map and the current run time
map when a register is not in the expression substitution map. For example, this would be
the case for register r2 before line 3. In that case, r2 is not in C and so Γ1r [r2] = Γ0r [r2].

Definition 6.4 (Not in substitution map). If the register A is not in the substitution map C ,
then the value for that register in the blocking assignment association map Γr should be
the same as the value of the register in the initial association map Γ0r at the start of the
execution of the statement.

not_in_subst_map Γ0r Γr C ,

∀A . C [A] = None =⇒ Γ0r [A] = Γr [A]

These invariants are then used to prove the relationship between substituted expressions
and the original expressions. This is used to prove the correctness of forward substitution
of statements.

Lemma 6.6 (Forward substitution of expressions). Given a map from registers to expression
C , an expression before forward substitution 4 , and the result of forward substituting 4 with
map C resulting in expression 4′, then executing 4 with the dynamically updated association
map Γr should be equivalent to executing 4′ with the initial state of all the registers Γ0r .

subst_expr C 4 = b4′c =⇒
in_subst_map Γ0r Γr Γa C =⇒
not_in_subst_map Γ0r Γr C =⇒
∀E . ((Γr, Γa), 4) ↓expr E =⇒ ((Γ0r , Γa), 4′) ↓expr E

Proof sketch. Using the invariants, one can show that the modified expression 4′ will behave
like the original expression 4 at the current context (Γr, Γa), when it is evaluated in the
initial context at the start of the state, i.e. (Γ0r , Γa). �

140

6.5 Verilog Generation

main() {

8: {

state <= 32'd18;

u_en <= (~ u_en);

wr_en <= 32'd0;

addr <= {{{reg_6 + 32'd0}

+ {reg_2 * 32'd4}}

/ 32'd4};

}

}

(a) Original Htl representation of the design,
with the starting state set to 8.

module main(reset, clk, finish, return_val);

// Register declarations

// ...

// BRAM interface

(* ram_style = "block" *)

logic [31:0] stack [1:0];

always @(negedge clk)

if ({u_en != en}) begin

if (wr_en) stack[addr] <= d_in;

else d_out <= stack[addr];

en <= u_en;

end

// Finite-state machine with data path

always @(posedge clk)

if ({reset == 32'd1}) state <= 32'd8;

else

case (state)

32'd8: begin

state <= 32'd18;

u_en <= (~ u_en);

wr_en <= 32'd0;

addr <= {{{reg_6 + 32'd0}

+ {reg_2 * 32'd4}}

/ 32'd4};

end

default:;

endcase

endmodule

(b) Translated Verilog design with the explicit re-
set and the explicit memory instantiation.

Figure 6.12: Instantiation of BRAM specification with Verilog implementation.

6.5 Verilog Generation

Finally, Verilog generation produces proper Verilog from Htl. The main two transforma-
tions that take place are:

1. Converting the mapping from states to Verilog statements into a case statement,
with reset logic to reset the state.

2. Instantiating the BRAM specification as a Verilog always-block.

This translation is shown in figure 6.12, where the Htl design shown in figure 6.12a is
translated to the Verilog shown in figure 6.12b. The main state machine is then turned into

141

6 Hardware Generation

a single always-block with an explicit reset, setting the state to the starting state present
in Htl. If the reset is not set, then there is a case statement that implements the state
machine from Htl, where each state has the same Verilog statements as the corresponding
state in Htl.

In addition to that, the implicit memory that is part of the Htl semantics is made explicit
by a separate always-block implementing the memory interface. This interface follows a
standard BRAM memory template, and can therefore be detected by the synthesis tool and
will become a proper memory in the synthesised netlist.

6.5.1 Forward simulation from Htl to Verilog

The Htl-to-Verilog simulation is conceptually simple, as the only transformation is from
the map representation of the code to the case-statement representation. The proof is more
involved, as the semantics of a map structure is quite different to that of the case-statement
to which it is converted.

Lemma 6.7 (Forward simulation from Htl to Verilog). In the following, I write tr_verilog
for the translation from Htl to Verilog. (Note that this translation cannot fail, so we do not
need the b·c constructor here.)

∀ℎ + B ∉ Wrong. tr_verilog(ℎ) = + ∧ ℎ ⇓ B =⇒ + ⇓ B .

Proof sketch. The translation from maps to case-statements is done by turning each node
of the tree into a case-expression containing the same statements. The main difficulty is
that a random-access structure is being transformed into an inductive structure where a
certain number of constructors need to be called to get to the correct case. In addition to
that, we need to prove that the BRAM template implements the BRAM specification and
that the negative edge trigger matches the Htl semantics of executing the memory. �

6.6 Summary

This chapter described the translation from the scheduled code, which was still represented
in a language with software semantics, down to Verilog with faithful hardware semantics.
On the way, some hardware specific optimisations and transformations had to be performed.
First, any direct assignments to the memory had to be translated to a more standard

142

6.6 Summary

interaction with memory, using read and write ports of a BRAM. Next, any blocking
assignment had to be turned into nonblocking assignment to parallelise the Verilog design,
helping improve synthesis results in some cases. Finally, proper Verilog had to be generated,
implementing the implicit behaviour present in Htl as explicit behaviour in Verilog.

143

Evaluation7
The evaluation aims to answer the following research questions:

RQ1 Is Vericert competitive with unverified HLS tools?

RQ2 Does adding scheduling to Vericert lead to a significant improvement in the quality
of the generated hardware (in terms of area and delay)?

RQ3 Is hyperblock scheduling better than naïve list scheduling?

RQ4 Did the design decisions (e.g. section 5.5.3) lead to an acceptable compilation time?

RQ5 How effective is the correctness theorem in Vericert?

7.1 Experimental Setup

Choice of HLS tool for comparison. Vericert is compared against Bambu HLS 2023.1
[Ferrandi et al. 2021], because it is open-source and hence easily accessible, but it can
still ‘produce faster accelerators in almost all the cases’ (Pilato and Ferrandi [2013]) when
compared to LegUp HLS, which itself is said to produce hardware ‘of comparable quality
to a commercial high-level synthesis tool’ (Andrew Canis et al. [2011]). Even though
these quotes are quite old, Bambu is still in active development and implements many
advanced optimisations like speculation. The baseline Bambu HLS version has all the
default automatic optimisations turned on. Vericert is also compared against an unop-
timised version of Bambu HLS, where all optimisations that can be toggled are turned
off. This affects optimisations like deep if-conversion that Bambu HLS would normally
automatically perform. Additionally, three versions of Vericert are compared to Bambu
HLS, so that optimisations performed by Vericert can also be tested. In the first version
of Vericert scheduling is disabled completely, generating sequential hardware where an
instruction is executed every clock cycle. Next, a version of Vericert with list scheduling is

145

7 Evaluation

implemented by disabling if-conversion, thereby only scheduling basic blocks. Finally, a
version of Vericert with the full hyperblock scheduling optimisation is shown, including
all optimisations that are implemented.

Choice and preparation of benchmarks. I evaluate Vericert using the PolyBench/C
benchmark suite (version 4.2.1) [Pouchet 2020], which is a collection of 30 numerical
kernels. PolyBench/C is popular in the HLS context [Choi and Cong 2018; Pouchet et al.
2013; Jieru Zhao et al. 2017; Zuo et al. 2013], since it has affine loop bounds, making it
attractive for streaming computation on FPGA architectures. It was also used as part of
Six et al. [2022] evaluation of their scheduling optimisation. I was able to use 27 of the
30 programs; three had to be discarded (correlation, gramschmidt and deriche) because
they involve square roots, requiring floats, which Vericert does not support. I configured
PolyBench/C’s parameters so that only integer types are used and use PolyBench/C’s
smallest datasets for each program to ensure that data can reside within on-chip memories
of the FPGA, avoiding any need for off-chip memory accesses. The benchmarks have not
been modified to make them run through Bambu HLS optimally, e.g. by adding pragmas
that trigger more advanced optimisations.

Vericert implements divisions and modulo operations in C using the corresponding
built-in Verilog operators. These built-in operators are designed to complete within a
single clock cycle, and this causes substantial penalties in clock frequency. Other HLS
tools, including Bambu, supply their own multi-cycle division/modulo implementations,
and I plan to do the same in future versions of Vericert. In the meantime, I have prepared
an alternative version of the benchmarks in which each division/modulo operation is
replaced with my own implementation that uses repeated division and multiplications by
2. Comparing Vericert against Bambu HLS on benchmarks with division without using the
C implementation of division would be futile, as preliminary tests show that because of
the use of the default combinational divider circuit generated by the synthesis tool, the
maximum clock frequency achieved by Vericert is around 30× less than the maximum
clock frequency achieved by Bambu, which uses a pipelined division implementation. The
following comparisons are therefore performed on a modified version of PolyBench/C with
divisions replaced with function calls to our C divider implementation. The final result
produced by the benchmarks remain unchanged.

Synthesis setup For each benchmark, the resulting Verilog hardware design was sim-
ulated using Verilator to get the total cycle count. Each design was synthesised, placed,

146

7.2 RQ1: Is Vericert Competitive With Unverified Tools

and routed onto a Xilinx series 7 FPGA (part number: xc7z020clg484-1) using Vivado
2023.1 to get its total area and its maximum frequency. Next, the total execution time was
calculated as total execution time = total clock cycles

maximum frequency . I ensured that every design met the
timing constraints of a 100MHz clock.

7.2 RQ1: Is Vericert Competitive With Unverified Tools

To assess how Vericert-hyperblock-scheduling fares against the unverified HLS tool Bambu.
Bambu is used in two modes: one where all default optimisations are enabled (Bambu-

default), and one where as many optimisations as possible are disabled (Bambu-no-opt).
Note that several ‘optimisations’ are built into Bambu and cannot be disabled, such as list
scheduling and loop flattening.

All the bars in figure 7.1 are relative to Bambu-default. The pink bars show Bambu-no-

opt. We see that although Vericert-hyperblock-scheduling is well behind Bambu-default

(its designs require 3× the cycle count), it performs comparably to Bambu-no-opt (1.04× the
cycle count), which is encouraging because Vericert-hyperblock-scheduling and Bambu-

no-opt have similar feature sets.
Comparing the execution time of the hardware designs produced by Vericert with

unoptimised Bambu HLS, we see that Vericert designs are around 1.6× slower than Bambu
HLS designs. This is because Vericert designs normally operate close to the maximum
frequency of 100MHz, whereas Bambu HLS designs in general seem to give more slack.

Finally, comparing area, on average all tools are quite similar, and Vericert can achieve
designs that are around the same size as optimised Bambu and unoptimised Bambu. One
thing to note, is that Bambu could be made to optimise the design purely for area, instead
of the default configuration that was chosen, in which case execution speed might suffer
slightly but the area could be reduced further.

7.3 RQ2: Area and Delay Improvements of Vericert

To assess whether adding scheduling to Vericert leads to better hardware designs, figure 7.1
compares the hardware produced by original Vericert (Vericert-no-scheduling) with that
produced when hyperblock scheduling is enabled (Vericert-hyperblock-scheduling). We
see that, on average, hyperblock scheduling leads to hardware that requires only 0.46× the
cycle count (middle plot). This is unsurprising given that original Vericert only executed a

147

1

2
3
5

10

25

1

2
3
5

10

25

0.7
1.0

2.0

3.0
4.0

2m
m

3m
m

adi

atas

bicg

cholesky

covariance

doitgen

durbin

fdtd-2d

floyd-w
arshall

gem
m

gem
ver

gesum
m
v

heat-3d

jacobi-1d

jacobi-2d

lu ludcm
p

m
vt

nussinov

seidel-2d

sym
m

syr2k

syrk

trisolv

trm
m

m
edian

Re
la
tiv

e
ex

ec
ut
io
n
tim

e

Vericert-no-scheduling
Vericert-list-scheduling

Vericert-hyperblock-scheduling
Bambu-no-opt

Re
la
tiv

e
cy

cl
e
co

un
t

Re
la
tiv

e
ar
ea

Figure 7.1: Results of simulating and synthesising the PolyBench/C benchmark suite using a range of HLS tools. All figures are
relative to Bambu-default.

7.4 RQ3: Hyperblock Scheduling Compared to Naïve Scheduling

single instruction per clock cycle. In terms of area (bottom plot), hyperblock scheduling
has, on average, a slight increase in area. This is due to the additional logic needed to
encode the predicated operations. In addition to that, predicated instructions can often
hinder operation chaining optimisations performed by the synthesis tool, increasing area
further.

7.4 RQ3: Hyperblock Scheduling Compared to Naïve
Scheduling

Hyperblock scheduling is considerably more complicated to implement and verify than list
scheduling, as it requires if-conversion to combine basic blocks into hyperblocks, as well as
predicate-aware scheduling. If we omit if-conversion entirely (hence avoiding predication
too), we obtain list scheduling as a special case. Does hyperblock scheduling yield enough
of a performance improvement over list scheduling to justify its additional complexity?

To answer this, figure 7.1 measures the hardware produced by Vericert with list schedul-
ing (Vericert-list-scheduling). On average, list scheduling leads to hardware that requires
0.51× the cycle count compared to Vericert-no-scheduling, which is 1.1× the cycle count
compared to Vericert-hyperblock-scheduling. I expect hyperblock scheduling to extend its
small lead over list scheduling once the heuristics that guide if-conversion are improved.
In particular, our predictions of the latency of predicated instructions are currently quite
conservative to ensure that timing constraints are met; improving these estimates is an
active research area [Rizzi et al. 2023; Tan et al. 2015; Ustun et al. 2020; H. Wang et al. 2023;
Zheng et al. 2014].

In terms of area, we see that Vericert-list-scheduling leads to the smallest hardware
designs. This can be attributed to the downstream logic synthesis tool being able to save
area by optimising chained operations, such as multiply–accumulate, while not having to
handle the predicates that are introduced with Vericert-hyperblock-scheduling.

7.5 RQ4: Compilation Times of Vericert

To assess whether Vericert-hyperblock-scheduling has acceptable compilation times, I
also compare it against Bambu. Compilation times did not deviate for Bambu, all of
them being around 3s mainly due to long startup costs. Vericert-hyperblock-scheduling
compiled each benchmark in 0.9s, also without much variation, showing that verification

149

7 Evaluation

0.01

0.1

1

10

1 2 3 4 5 6 7

Ti
m
e
to

ve
rif

y
sy

m
bo

lic
st
at
e
(s
)

Test number

naïve validator
hashed predicate validator

Figure 7.2: Comparing the performance of the naïve hyperblock scheduling validator
without hashing, compared to the validator with predicate hashing. The blocks that are
tested are manually written and manually scheduled, and are sorted by the time taken
by the hashed predicated validator to prove the equivalence.

40379 passes (26.00%) 114849 compile-time errors (73.97%) 39 run-time errors (0.03%)

Figure 7.3: Results of fuzzing Vericert using 155267 random C programs generated by
Csmith.

was not overly costly. As for the question about whether our design decisions led to
these compilation times: I remark that if the ‘final-state predicates’ innovation that we
introduced in section 5.5.3 is disabled, that none of the benchmarks compile within a few
minutes and eventually the machine runs out of memory.

To get a better idea of the difference between using the hashed, final-state predicates
compared to the more naïve validator, figure 7.2 shows detailed times of how long validation
took on some hand-crafted examples, that would not time-out the verification for the naïve
validator. The example test programs differ roughly in the number of predicates that are
present and how often they are used to justify reorderings of instructions. This shows that
using final-state predicates meant that validation time stayed mostly constant, whereas
the naïve validator quickly took exponentially more time to validate the same schedule.

7.6 RQ5: Effectiveness of Vericert’s Correctness
Theorem

‘Beware of bugs in the above code; I have only proved it correct, not tried it.’

– D. E. Knuth (1977)

150

7.7 Summary

To gain further confidence that the Verilog designs generated byVericert are actually correct,
and that the correctness theorem is indeed effective, I fuzzed Vericert using Csmith [Yang
et al. 2011]. Yang et al. previously used Csmith in an extensive fuzzing campaign on
CompCert and found a handful of bugs in the unverified parts of that compiler, so it is
natural to explore whether it can find bugs in Vericert too. Herklotz, Du et al. [2021] have
recently used Csmith to fuzz other HLS tools including LegUp, so I configured Csmith in
a similar way. In addition to the features turned off by Herklotz, Du et al., I turned off
the generation of global variables and non-32-bit operations. The generated designs were
tested by simulating them and comparing the output value to the results of compiling the
test-cases with GCC 10.3.0.

The results of the fuzzing run are shown in Fig. 7.3. Out of 155267 test-cases generated
by Csmith, 26% of them passed, meaning they compiled without error and resulted in
the same final value as GCC. Most of the test-cases, 73.97%, failed at compile time. The
most common reasons for this were unsigned comparisons between integers (Vericert
requires them to be signed), and the presence of 8-bit operations (which Vericert does
not support, and which I could not turn off due to a limitation in Csmith). Because the
test-cases generated by Csmith could not be tailored exactly to the C fragment that Vericert
supports, such a high compile-time failure rate is expected. Finally, and most interestingly,
there were a total of 39 run-time failures, which the correctness theorem should be proving
impossible. However, all 39 of these failures are due to a bug in the pretty-printing of the
final Verilog code, where a logical negation (!) was accidentally used instead of a bitwise
negation (~). Once this bug was fixed, all test-cases passed.

7.7 Summary

Vericert with hyperblock scheduling seems to generate hardware around the same cycle
count as the hardware generated by Bambu HLS, which is encouraging. However, due to
if-conversion and scheduling sometimes mispredicting the latency of certain operations,
especially predicated operations, the final execution time of Vericert is 1.57× that of Bambu
HLS.With better latency estimation, I am confident that this could get closer to unoptimised
Bambu HLS. However, to get closer to optimised Bambu HLS, more optimisations will
need to be implemented. One important optimisation that is missing from Vericert is
loop scheduling, which would close the gap to Bambu HLS, especially on a loop-centric
benchmark such as PolyBench/C.

151

Conclusion8
8.1 Coq mechanisation

The lines of code for the implementation and proof of Vericert can be found in table 8.1.
Overall, it took about 3 person-years to build Vericert – about 6 person-months on imple-
mentation and 30 person-months on proofs. The largest proofs were by far the scheduling
proof and the three-valued logic validator. The scheduling proof was difficult, and different
attempts with different proof styles were needed to complete it. The main difficulty was
minimising the need for the three-valued validator, as initially it appeared to be unneces-
sary. In the end, it was needed to prove the equivalence of predicates in the absence of
structural equality. This led to the proof of the three-valued logic validator. Even though it
looks like a very large proof, it was mainly quite straight-forward and purely technical,
taking roughly 1.5 months to complete. The second hardest proof was the correctness proof
for the Htl generation, which required equivalence proofs between all integer operations
supported by CompCert and those supported in hardware. A large percentage of the proof
is dedicated to the load and store instruction translation. These were tedious to prove
correct because of the substantial difference between the memory models used, and the
need to prove properties such as stores outside of the allocated memory being undefined,
so that a finite array could be used. In addition to that, since pointers in Htl and Verilog
are represented as integers, instead of as a separate ‘pointer’ type like in the CompCert
semantics, one had to show that the integer arithmetic was correct with respect to the
pointer arithmetic in CompCert. Many new theorems had to be proven about them in
Vericert to prove the conversion from pointer to integer. Moreover, another large proof
in the back end describing the correct BRAM generation includes many proofs about the
extensional equality of array operations, such as merging arrays with different assignments.
Due to the negative edge implying that two merges take place every clock cycle, it can
become tedious to handle merges of changes performed during each of the clock edges,
as the extensional equality over merges needs to be specified for each possible place the

153

8 Conclusion

Table 8.1: Statistics about the numbers of lines of code in the proof and implementation
of Vericert, counted using coqwc.

OCaml Spec Proofs Total

Data structures and libraries — 1099 771 1870
Integers and values — 393 520 913
RtlBlock and RtlPar semantics — 748 286 1034
Hyperblock generation — 1716 1820 3536
Hyperblock scheduling 1083 3939 5597 10619
three-valued logic validator 1276 4054 5040 10370
Htl semantics — 249 31 280
Htl generation — 2248 2996 5244
BRAM generation — 1867 2890 4757
forward substitution — 481 425 906
Verilog semantics — 628 124 752
Verilog generation — 261 283 544
Top-level driver, pretty printers 1404 273 223 1900

Total 3763 17956 21006 42725

register assignment could have taken place.

8.2 Limitations and Future Work

There are various limitations in Vericert compared to other HLS tools due to the fact
that our main focus was on formally verifying the translation from Rtl to Verilog. In
this section, we outline the current limitations of our tool and suggest how they can be
overcome in future work, first describing limitations to the generated hardware, and then
describing the limitations on the software input that Vericert accepts.

8.2.1 Limitations to the generated hardware

Lack of support for external IP core

Intellectual property cores (IP cores) and other external hardware cores are often used
by HLS tools to implement specific operations efficiently. One example would be the
implementation of a division core, which can be designed as a fully pipelined hardware
design, executing different stages of an operation in parallel. This is in contrast to using
the default division operation that generates the division circuit in a single clock cycle.

154

8.2 Limitations and Future Work

This means that the otherwise long-running division operation can be performed over
multiple, shorter cycles, leaving the overall maximum frequency of the design unchanged.
In Htl, IP cores could be represented in a similar fashion to load and store instructions,
by using wires to communicate with an abstract computation block modelled in Htl and
could later be replaced by a hardware implementation.

Furthermore, support for IP cores with a specific interface, such as a simple ready/finished
interface, could have a general interface specification, so that hardware that follows this
pattern could be directly integrated into Vericert. Integrating a new core would only
require a proof of correctness of the specification and the Verilog implementation, as well
as an equivalence with the operation that it should be replacing. This would allow for a
more general implementation of the memory interface, for example, making it possible to
implement both loads and stores in the usual positive edge of the clock, as well as making
it possible to pipeline these loads and stores.

Lack of Loop Pipelining

Another critical HLS optimisation that is often integrated with the instruction scheduling
optimisation is loop pipelining, also known as modulo scheduling. This is an important
optimisation for HLS, making it possible to execute parts of different loop iterations in
parallel. The ideal scenario is that the whole function can eventually be pipelined so that it
can accept a stream of inputs every clock cycle. This type of hardware design is currently
not possible with Vericert. However, there is work on proving software loop pipelining
correct in CompCert [Tristan and Leroy 2010], which could be adapted and extended to
support generating hardware pipelines, by using predicated execution [B. Ramakrishna
Rau et al. 1992], which are already supported, and a rotating register file [B. R. Rau et al.
1992] to remove the need for a prologue and epilogue in the software pipelined loop.

Limitations with I/O

Vericert is currently limited in terms of I/O because the main function cannot accept any
arguments if the Clight program is to be well-formed.1 Moreover, external function calls
that produce traces have not been implemented yet, but these could enable the C program
to read and write values on a bus that is shared with various other components in the

1Technically, Vericert (and indeed, CompCert) can compile main functions that have arbitrary arguments
and will handle those inputs appropriately, but the correctness theorem offers no guarantees about such
programs.

155

8 Conclusion

hardware design.

8.2.2 Limitations on the software input

Lack of support for global variables

In CompCert, each global variable is stored in its own memory. A generalisation of our
translation of the stack into a BRAM block could therefore translate global variables in the
same manner. This would require a generalisation of pointers so that they store provenance
information to ensure that each pointer accesses the right BRAM. It would also be necessary
to generalise the BRAM interface so that it decodes the provenance information and indexes
the correct array.

Other language restrictions

C and Verilog handle signedness quite differently. By default, all operators and registers in
Verilog (and Htl) are unsigned, so to force an operation to handle the bits as signed, both
operators have to be forced to be signed. Moreover, Verilog implicitly resizes expressions
to the largest needed size by default, which can affect the result of the computation. This
feature is not supported by the Verilog semantics we adopted, so to match the semantics to
the behaviour of the simulator and synthesis tool, braces are placed around all expressions
to inhibit implicit resizing. Instead, explicit resizing is used in the semantics, and operations
can only be performed on two registers that have the same size.

Furthermore, equality checks between unsigned variables are actually not supported,
because this requires supporting the comparison of pointers, which should only be per-
formed between pointers with the same provenance. In Vericert there is currently no way
to determine the provenance of a pointer, and it therefore cannot model the semantics of
unsigned comparison in CompCert. This is not a severe restriction in practice however,
because in the absence of dynamic allocation, equality comparison of pointers is rarely
needed, and equality comparison of integers can still be performed by casting them both
to signed integers.

Finally, the mulhs and mulhu instructions, which fetch the upper bits of a 32-bit multi-
plication, are not translated by Vericert, because 64-bit numbers are not supported. These
instructions are only generated to optimise divisions by a constant that is not a power of
two, so turning off constant propagation will allow these programs to pass without error.

156

8.3 Summary

8.2.3 The Future of Vericert

Designing Correct Hardware

It would be interesting to use the Vericert correctness theorem with the Verified Software
Toolchain [Appel 2011] to prove that the hardware implements the same specification
as the software. Specifications would become more interesting with more support for
I/O, however, it could already be used to prove the correctness of the output of a Vericert
design.

In addition to that, it would be interesting to use a verified synthesis tool to build a
complete workflow from software to hardware. Lööw [2021] already showed that a Vericert
design with registers with a bit-width could be synthesised into LUTs using Lutsig. One
could then imagine trying to prove that a specification that is proven to hold about the
C code would also hold about the netlist. The main issue is that this proof can not be
performed in one theorem prover, as Lutsig is proven correct in HOL4.

Interaction With Software and Hardware

Another direction that could be explored is hardware/software co-design or the interaction
of HLS designs with externally defined hardware in a more modular fashion. CompCert-
O [Koenig and Shao 2021] makes it possible to reason about the interaction of separate
programs with different semantics through the C calling convention of CompCert. It
would be interesting to extend the Vericert Verilog semantics with a calling convention
that could be used to interact and reason about the hardware at this level. In this way, one
could either verify heterogeneous systems, or verify and reason about the interaction of
CompCert C designs destined to be synthesised into hardware with externally verified
hardware designs.

8.3 Summary

In conclusion, the need for a correct high-level synthesis led to the design of Vericert,
a verified HLS tool based on CompCert. We showed that with the implementation of
hyperblock scheduling, the performance of Vericert was around 1.6× performance of
the unoptimised version of Bambu HLS, which is promising, while being around 3.6×
slower than optimised Bambu HLS. We hope that Vericert will enable HLS to be used in
spaces where the correctness of the hardware is paramount, for example for compiling

157

8 Conclusion

cryptographic algorithms from C, where performance might only be a secondary concern.
This should still allow for efficient application-specific accelerators, and together with
a proof of correctness between the netlist and the hardware design, a near end-to-end
correctness theorem for the accelerator.

158

Bibliography

[SW] AbsInt, CompCert release 19.10 2019. url: https://www.absint.com/releasenotes/c
ompcert/19.10/ (cit. on p. 90).

Frances E. Allen. 1970. ‘Control Flow Analysis’. In: Proceedings of a Symposium on Compiler
Optimization. Association for Computing Machinery, Urbana-Champaign, Illinois, 1–19.
isbn: 9781450373869. doi: 10.1145/800028.808479 (cit. on p. 34).

J. R. Allen, Ken Kennedy, Carrie Porterfield and Joe Warren. 1983. ‘Conversion of Control
Dependence to Data Dependence’. In: Proceedings of the 10th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL ’83). Association for Comput-
ing Machinery, Austin, Texas, 177–189. isbn: 0897910907. doi: 10.1145/567067.567085
(cit. on p. 90).

AMD. 2023a. Vitis Forums. Relevant quote from AMD: “If-Conversion aims to convert a
sequence of blocks into a single block for better optimization result.” (2023). Retrieved
2nd June 2023 from https://bit.ly/vitisifc (cit. on p. 89).

AMD. 2023b. Vitis High-level Synthesis. (2023). Retrieved 21st May 2023 from https://bit

.ly/41R0204 (cit. on pp. 19, 32, 39, 44, 46, 65).
D.P. Anderson and J. Ainscough. May 1994. ‘The Verification of Scheduling Algorithms’. In:

IEE Colloquium on Structured Methods for Hardware Systems Design. (May 1994), 7/1–7/5
(cit. on p. 49).

Andrew W. Appel. 2011. ‘Verified Software Toolchain’. In: Programming Languages and
Systems. Ed. by Gilles Barthe. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–17. isbn:
978-3-642-19718-5. doi: 10.1007/978-3-642-19718-5_1 (cit. on p. 157).

Apple. June 2022. Deploying Transformers on the Apple Neural Engine. (June 2022). Retrieved
13th Jan. 2024 from https://machinelearning.apple.com/research/neural-engine-tra

nsformers (cit. on p. 19).
Arm. 11th Nov. 2011. ARMv8 Instruction Set Overview. Tech. rep. PRD03-GENC-010197 15.0.

(11th Nov. 2011) (cit. on p. 38).
Michael Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry and

Benjamin Werner. 2011. ‘A Modular Integration of SAT/SMT Solvers to Coq through
Proof Witnesses’. In: Certified Programs and Proofs. Ed. by Jean-Pierre Jouannaud and
Zhong Shao. Springer Berlin Heidelberg, Berlin, Heidelberg, 135–150. isbn: 978-3-642-
25379-9. doi: 10.1007/978-3-642-25379-9_12 (cit. on pp. 43, 115).

Matthew Aubury, Ian Page, Geoff Randall, Jonathan Saul and Robin Watts. 1996. ‘Handel-C
Language Reference Guide’. Computing Laboratory. Oxford University, UK (cit. on p. 32).

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Aviži-
enis, John Wawrzynek and Krste Asanović. 2012. ‘Chisel: Constructing hardware in a

159

https://www.absint.com/releasenotes/compcert/19.10/
https://www.absint.com/releasenotes/compcert/19.10/
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/567067.567085
https://bit.ly/vitisifc
https://bit.ly/41R0204
https://bit.ly/41R0204
https://doi.org/10.1007/978-3-642-19718-5_1
https://machinelearning.apple.com/research/neural-engine-transformers
https://machinelearning.apple.com/research/neural-engine-transformers
https://doi.org/10.1007/978-3-642-25379-9_12

Bibliography

Scala embedded language’. In: DAC Design Automation Conference 2012. IEEE, 1212–1221.
doi: 10.1145/2228360.2228584 (cit. on p. 66).

Kenneth R. Baker. 2019. Principles of sequencing and scheduling. eng. (Second edition. ed.).
Wiley series in operations research and management science. Wiley, Hoboken, NJ. isbn:
1-119-26259-3 (cit. on p. 89).

Thomas Ball and James R. Larus. 1993. ‘Branch Prediction for Free’. In: Proceedings of the
ACM SIGPLAN 1993 Conference on Programming Language Design and Implementation
(PLDI ’93). Association for Computing Machinery, Albuquerque, New Mexico, USA,
300–313. isbn: 0897915984. doi: 10.1145/155090.155119 (cit. on p. 97).

K. Banerjee, C. Karfa, D. Sarkar and C. Mandal. Aug. 2014. ‘Verification of Code Motion
Techniques Using Value Propagation’. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 33, 8, (Aug. 2014), 1180–1193. doi: 10.1109/TCAD.2014.2
314392 (cit. on pp. 21, 45, 47).

Haniel Barbosa, Clark Barrett, Martin Brain et al.. 2022. ‘cvc5: A Versatile and Industrial-
Strength SMT Solver’. In: Tools and Algorithms for the Construction and Analysis of
Systems. Ed. by Dana Fisman and Grigore Rosu. Springer International Publishing, Cham,
415–442. isbn: 978-3-030-99524-9 (cit. on pp. 42, 43).

Clark Barrett, Pascal Fontaine and Cesare Tinelli. 2017. The SMT-LIB Standard: Version 2.6.
Tech. rep. Department of Computer Science, The University of Iowa. www.SMT-LIB.org
(cit. on p. 42).

Gilles Barthe, Delphine Demange and David Pichardie. Mar. 2014. ‘Formal Verification of
an SSA-Based Middle-End for CompCert’. ACM Trans. Program. Lang. Syst., 36, 1, (Mar.
2014). doi: 10.1145/2579080 (cit. on p. 97).

[SW] Michel Berkelaar, lp_solve v5.5 2010. url: https://lpsolve.sourceforge.net/5.5/
(cit. on p. 98).

Yves Bertot and Pierre Castéran. 2004. InteractiveTheorem Proving and ProgramDevelopment.
Springer Berlin Heidelberg. doi: 10.1007/978-3-662-07964-5 (cit. on pp. 43, 51).

Frédéric Besson, Sandrine Blazy and Pierre Wilke. Nov. 2018. ‘CompCertS: A Memory-
Aware Verified C Compiler Using a Pointer as Integer Semantics’. Journal of Automated
Reasoning, 63, 2, (Nov. 2018), 369–392. doi: 10.1007/s10817-018-9496-y (cit. on p. 86).

Sandrine Blazy and Xavier Leroy. 2005. ‘Formal Verification of a Memory Model for C-Like
Imperative Languages’. In: Formal Methods and Software Engineering. Ed. by Kung-Kiu
Lau and Richard Banach. Springer, Berlin, Heidelberg, 280–299. isbn: 978-3-540-32250-4
(cit. on p. 125).

L. Borowski. 1970. Selected Works of J. Łukasiewicz. Nort Holland (cit. on p. 116).
Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala and Arvind. 2020. ‘The Essence of

Bluespec: A Core Language for Rule-Based Hardware Design’. In: Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI
2020). Association for Computing Machinery, London, UK, 243–257. isbn: 9781450376136.
doi: 10.1145/3385412.3385965 (cit. on pp. 46, 50, 66).

Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe and Pascal Fontaine. 2009.
‘veriT: An Open, Trustable and Efficient SMT-Solver’. In: Automated Deduction – CADE-

160

https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/155090.155119
https://doi.org/10.1109/TCAD.2014.2314392
https://doi.org/10.1109/TCAD.2014.2314392
www.SMT-LIB.org
https://doi.org/10.1145/2579080
https://lpsolve.sourceforge.net/5.5/
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/s10817-018-9496-y
https://doi.org/10.1145/3385412.3385965

Bibliography

22. Ed. by Renate A. Schmidt. Springer Berlin Heidelberg, Berlin, Heidelberg, 151–156.
isbn: 978-3-642-02959-2. doi: 10.1007/978-3-642-02959-2_12 (cit. on pp. 42, 43, 117).

Andrew Boutros and Vaughn Betz. 2021. ‘FPGA Architecture: Principles and Progression’.
IEEE Circuits and Systems Magazine, 21, 2, 4–29. doi: 10.1109/MCAS.2021.3071607 (cit. on
p. 27).

Lucy Bowen and Chris Lupo. 2020. ‘The Performance Cost of Software-Based Security
Mitigations’. In: Proceedings of the ACM/SPEC International Conference on Performance
Engineering (ICPE ’20). Association for Computing Machinery, Edmonton AB, Canada,
210–217. isbn: 9781450369916. doi: 10.1145/3358960.3379139 (cit. on p. 20).

Matthew Bowen. 1998. ‘Handel-C Language Reference Manual’. Embedded Solutions Ltd, 2
(cit. on p. 32).

Thomas Braibant and Adam Chlipala. 2013. ‘Formal Verification of Hardware Synthesis’.
In: Computer Aided Verification. Ed. by Natasha Sharygina and Helmut Veith. Springer
Berlin Heidelberg, Berlin, Heidelberg, 213–228. isbn: 978-3-642-39799-8 (cit. on pp. 50,
66).

Robert Brummayer and Armin Biere. 2009. ‘Boolector: An Efficient SMT Solver for Bit-
Vectors and Arrays’. In: Tools and Algorithms for the Construction and Analysis of Systems.
Ed. by Stefan Kowalewski and Anna Philippou. Springer Berlin Heidelberg, Berlin,
Heidelberg, 174–177. isbn: 978-3-642-00768-2 (cit. on p. 42).

Mihai Budiu and Seth Copen Goldstein. 2002. ‘Compiling Application-Specific Hardware’.
In: Field-Programmable Logic and Applications, Reconfigurable Computing Is Going Main-
stream, 12th International Conference, FPL 2002, Montpellier, France, September 2-4, 2002,
Proceedings (Lecture Notes in Computer Science). Ed. by Manfred Glesner, Peter Zipf
and Michel Renovell. Vol. 2438. Springer, 853–863. doi: 10.1007/3-540-46117-5_88
(cit. on pp. 38, 89).

[SW] Cadence, Conformal Equivalence Checker 2023. url: https://www.cadence.com/en
_US/home/tools/digital-design-and-signoff/logic-equivalence-checking/conformal-

equivalence-checker.htmlRetrieved 20th Dec. 2023 from (cit. on p. 42).
[SW] Cadence, Jasper C2RTL 2023. url: https://www.cadence.com/en_US/home/tools/sys

tem-design-and-verification/formal-and-static-verification/jasper-c-formal-ver

ification.htmlRetrieved 20th Dec. 2023 from (cit. on p. 47).
Timothy J. Callahan and John Wawrzynek. 1998. ‘Instruction-Level Parallelism for Recon-

figurable Computing’. In: Field-Programmable Logic and Applications, From FPGAs to
Computing Paradigm, 8th International Workshop, FPL’98, Tallinn, Estonia, August 31 -
September 3, 1998, Proceedings (Lecture Notes in Computer Science). Ed. by Reiner W.
Hartenstein and Andres Keevallik. Vol. 1482. Springer, 248–257. doi: 10.1007/BFb0055252
(cit. on pp. 38, 89).

Philip L Campbell, Ksheerabdhi Krishna and Robert A Ballance. 1993. ‘Refining and defining
the program dependence web’. Cs93-6, University of New Mexico, Albuquerque (cit. on
p. 35).

A. Canis, S. D. Brown and J. H. Anderson. Sept. 2014. ‘Modulo SDC scheduling with
recurrence minimization in high-level synthesis’. In: 2014 24th International Conference

161

https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1109/MCAS.2021.3071607
https://doi.org/10.1145/3358960.3379139
https://doi.org/10.1007/3-540-46117-5_88
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking/conformal-equivalence-checker.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking/conformal-equivalence-checker.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking/conformal-equivalence-checker.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-c-formal-verification.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-c-formal-verification.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-c-formal-verification.html
https://doi.org/10.1007/BFb0055252

Bibliography

on Field Programmable Logic and Applications (FPL). (Sept. 2014), 1–8. doi: 10.1109/FPL.2
014.6927490 (cit. on p. 40).

Andrew Canis. 2015. ‘Legup: open-source high-level synthesis research framework’. PhD
thesis (cit. on pp. 63, 89).

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason H.
Anderson, Stephen Brown and Tomasz Czajkowski. 2011. ‘LegUp: High-Level Synthesis
for FPGA-Based Processor/Accelerator Systems’. In: Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA ’11). Association for
Computing Machinery, Monterey, CA, USA, 33–36. isbn: 9781450305549. doi: 10.1145/1
950413.1950423 (cit. on p. 145).

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz
Czajkowski, Stephen D. Brown and Jason H. Anderson. Sept. 2013. ‘Legup: an Open-
Source High-Level Synthesis Tool for Fpga-Based Processor/accelerator Systems’. ACM
Trans. Embed. Comput. Syst., 13, 2, (Sept. 2013). doi: 10.1145/2514740 (cit. on pp. 19, 30,
32, 39, 44, 46, 65, 68).

L.P. Carloni, K.L. McMillan and A.L. Sangiovanni-Vincentelli. Sept. 2001. ‘Theory of Latency-
Insensitive Design’. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 20, 9, (Sept. 2001), 1059–1076. doi: 10.1109/43.945302 (cit. on p. 41).

Pohua P. Chang, Scott A. Mahlke and Wen-mei W. Hwu. 1991. ‘Using Profile Information
to Assist Classic Code Optimizations’. Softw. Pract. Exp., 21, 12, 1301–1321. doi: 10.1002
/spe.4380211204 (cit. on p. 96).

R. Chapman, G. Brown and M. Leeser. Mar. 1992. ‘Verified high-level synthesis in BEDROC’.
In: [1992] Proceedings The European Conference on Design Automation. IEEE Computer
Society, (Mar. 1992), 59–63. doi: 10.1109/EDAC.1992.205894 (cit. on pp. 44, 46, 48).

Pankaj Chauhan. 2020. Formally Ensuring Equivalence between C++ and RTL designs. SLEC.
(2020). https://bit.ly/2KbT0ki (cit. on pp. 21, 47).

Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric Eide and
John Regehr. 2013. ‘Taming Compiler Fuzzers’. In: Proceedings of the 34th ACM SIGPLAN
conference on Programming language design and implementation, 197–208. doi: 10.1145
/2491956.2462173 (cit. on p. 63).

Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chlipala and
Arvind. Aug. 2017. ‘Kami: a Platform for High-Level Parametric Hardware Specification
and Its Modular Verification’. Proc. ACM Program. Lang., 1, ICFP, (Aug. 2017), 24:1–24:30.
doi: 10.1145/3110268 (cit. on p. 50).

Young-kyu Choi and Jason Cong. 2018. ‘HLS-Based Optimization and Design Space Ex-
ploration for Applications with Variable Loop Bounds’. In: 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 1–8. doi: 10.1145/3240765.3240815
(cit. on p. 146).

R. Chouksey and C. Karfa. 2020. ‘Verification of Scheduling of Conditional Behaviors in
High-Level Synthesis’. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
1–14. doi: 10.1109/TVLSI.2020.2978242 (cit. on pp. 21, 45, 47).

R. Chouksey, C. Karfa and P. Bhaduri. July 2019. ‘Translation Validation of Code Motion
Transformations Involving Loops’. IEEE Transactions on Computer-Aided Design of Integ-

162

https://doi.org/10.1109/FPL.2014.6927490
https://doi.org/10.1109/FPL.2014.6927490
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1145/2514740
https://doi.org/10.1109/43.945302
https://doi.org/10.1002/spe.4380211204
https://doi.org/10.1002/spe.4380211204
https://doi.org/10.1109/EDAC.1992.205894
https://bit.ly/2KbT0ki
https://doi.org/10.1145/2491956.2462173
https://doi.org/10.1145/2491956.2462173
https://doi.org/10.1145/3110268
https://doi.org/10.1145/3240765.3240815
https://doi.org/10.1109/TVLSI.2020.2978242

Bibliography

rated Circuits and Systems, 38, 7, (July 2019), 1378–1382. doi: 10.1109/TCAD.2018.2846654
(cit. on pp. 21, 45, 47).

E. Clarke, D. Kroening and K. Yorav. June 2003. ‘Behavioral consistency of C and Verilog
programs using bounded model checking’. In: Proceedings 2003. Design Automation
Conference (IEEE Cat. No.03CH37451). (June 2003), 368–371. doi: 10.1145/775832.775928
(cit. on p. 46).

J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers and Z. Zhang. Apr. 2011. ‘High-
Level Synthesis for Fpgas: From Prototyping To Deployment’. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 30, 4, (Apr. 2011), 473–491.
doi: 10.1109/TCAD.2011.2110592 (cit. on p. 68).

Jason Cong and Zhiru Zhang. July 2006. ‘An efficient and versatile scheduling algorithm
based on SDC formulation’. In: 2006 43rd ACM/IEEE Design Automation Conference. (July
2006), 433–438. doi: 10.1145/1146909.1147025 (cit. on pp. 22, 39, 68, 98).

P. Coussy, D. D. Gajski, M. Meredith and A. Takach. July 2009. ‘An Introduction To High-
Level Synthesis’. IEEE Design Test of Computers, 26, 4, (July 2009), 8–17. doi: 10.1109
/MDT.2009.69 (cit. on p. 30).

Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanuparthi, Hareesh
Khattri, Jason M. Fung, Ahmad-Reza Sadeghi and Jeyavijayan Rajendran. Aug. 2019.
‘HardFails: Insights into Software-Exploitable Hardware Bugs’. In: 28th USENIX Security
Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA, (Aug. 2019),
213–230. isbn: 978-1-939133-06-9. https://www.usenix.org/conference/usenixsecurity
19/presentation/dessouky (cit. on p. 20).

Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds
and Clark Barrett. 2017. ‘SMTCoq: A Plug-In for Integrating SMT Solvers into Coq’.
In: Computer Aided Verification. Ed. by Rupak Majumdar and Viktor Kunčak. Springer
International Publishing, Cham, 126–133. isbn: 978-3-319-63390-9. doi: 10.1007/978-3-
319-63390-9_7 (cit. on p. 115).

John R Ellis. 1985. ‘Bulldog: A compiler for VLIW architectures’. PhD thesis. Yale University
(cit. on p. 89).

Martin Ellis. 2008. ‘Correct Synthesis and Integration of Compiler-Generated Function
Units’. PhD thesis. Newcastle University. https://theses.ncl.ac.uk/jspui/handle/104
43/828 (cit. on pp. 45, 46, 51).

Karine Even-Mendoza, Cristian Cadar and Alastair Donaldson. Sept. 2020. ‘Closer to the
Edge: Testing Compilers More Thoroughly by Being Less Conservative About Undefined
Behaviour’. In: IEEE/ACM International Conference on Automated Software Engineering,
New Ideas and Emerging Results Track (ASE-NIER 2020). undefined, (Sept. 2020) (cit. on
p. 65).

P. Faraboschi, J.A. Fisher and C. Young. Nov. 2001. ‘Instruction Scheduling for Instruction
Level Parallel Processors’. Proceedings of the IEEE, 89, 11, (Nov. 2001), 1638–1659. doi:
10.1109/5.964443 (cit. on p. 36).

Fabrizio Ferrandi. 2014. PandA-Bambu release notes. (2014). Retrieved 16th Nov. 2023 from
https://github.com/ferrandi/PandA-bambu/blob/c443bf14c33a9a74008ada12f56e7a62e

30e5efe/NEWS#L304 (cit. on p. 89).

163

https://doi.org/10.1109/TCAD.2018.2846654
https://doi.org/10.1145/775832.775928
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1145/1146909.1147025
https://doi.org/10.1109/MDT.2009.69
https://doi.org/10.1109/MDT.2009.69
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
https://www.usenix.org/conference/usenixsecurity19/presentation/dessouky
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1007/978-3-319-63390-9_7
https://theses.ncl.ac.uk/jspui/handle/10443/828
https://theses.ncl.ac.uk/jspui/handle/10443/828
https://doi.org/10.1109/5.964443
https://github.com/ferrandi/PandA-bambu/blob/c443bf14c33a9a74008ada12f56e7a62e30e5efe/NEWS#L304
https://github.com/ferrandi/PandA-bambu/blob/c443bf14c33a9a74008ada12f56e7a62e30e5efe/NEWS#L304

Bibliography

Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito,
Marco Lattuada, Marco Minutoli, Christian Pilato and Antonino Tumeo. Dec. 2021.
‘Bambu: an Open-Source Research Framework for the High-Level Synthesis of Complex
Applications’. In: 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, (Dec.
2021), 1327–1330. doi: 10.1109/DAC18074.2021.9586110 (cit. on p. 145).

Joseph A. Fisher. 1981. ‘Trace Scheduling: A Technique for Global Microcode Compaction’.
IEEE Transactions on Computers, C-30, 7, 478–490. doi: 10.1109/TC.1981.1675827 (cit. on
p. 89).

Dan Gajski, Todd Austin and Steve Svoboda. 2010. ‘What input-language is the best choice
for high level synthesis (HLS)?’ In: Design Automation Conference, 857–858. doi: 10.1145
/1837274.1837489 (cit. on p. 65).

Stephane Gauthier and Zubair Wadood. 2020. High-Level Synthesis: Can it outperform hand-
coded HDL? White paper. (2020). https://info.silexica.com/high-level-synthesis/1
(cit. on p. 19).

Georges Gonthier. 2008. ‘Formal Proof–the Four-Color Theorem’. Notices of the AMS, 55,
11, 1382–1393 (cit. on p. 43).

Google. 2023. XLS: Accelerated HW Synthesis. The XLS scheduler refers to using an SMT
solver to merge mutually exclusive nodes. (2023). Retrieved 14th Nov. 2023 from https:

//github.com/google/xls/blob/dde7095ff1050b09c37cb44d1977bff1af8de050/xls/sche

duling/mutual_exclusion_pass.h#L112 (cit. on pp. 30, 32, 89).
Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux and Alexandre Bérard.

Oct. 2023. ‘Formally Verifying Optimizations with Block Simulations’. Proc. ACM Program.
Lang., 7, OOPSLA2, Article 224, (Oct. 2023), 30 pages. doi: 10.1145/3622799 (cit. on p. 61).

David J. Greaves. 2019. Research Note: An Open Source Bluespec Compiler. (2019). arXiv:
1905.03746 [cs.PL] (cit. on p. 66).

David J. Greaves and Satnam Singh. 2008. ‘Kiwi: Synthesis of FPGA Circuits from Parallel
Programs’. In: FCCM. IEEE Computer Society, 3–12. doi: 10.1109/FCCM.2008.46 (cit. on
p. 66).

Monika Gupta. 4th Oct. 2023. Google Tensor G3: The new chip that gives your Pixel an AI
upgrade. Google. (4th Oct. 2023). Retrieved 13th Jan. 2024 from https://blog.google/pr

oducts/pixel/google-tensor-g3-pixel-8/ (cit. on p. 19).
S. Gupta, N. Dutt, R. Gupta and A. Nicolau. Jan. 2003. ‘SPARK: a high-level synthesis

framework for applying parallelizing compiler transformations’. In: 16th International
Conference on VLSI Design, 2003. Proceedings. (Jan. 2003), 461–466. doi: 10.1109/ICVD.20
03.1183177 (cit. on p. 47).

N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud. 1991. ‘The Synchronous Data Flow
Programming Language LUSTRE’. Proceedings of the IEEE, 79, 9, 1305–1320. doi: 10.110
9/5.97300 (cit. on p. 35).

Paul Havlak. 1994. ‘Construction of thinned gated single-assignment form’. In: Languages
and Compilers for Parallel Computing. Ed. by Utpal Banerjee, David Gelernter, Alex
Nicolau and David Padua. Springer Berlin Heidelberg, Berlin, Heidelberg, 477–499. isbn:
978-3-540-48308-3 (cit. on p. 35).

164

https://doi.org/10.1109/DAC18074.2021.9586110
https://doi.org/10.1109/TC.1981.1675827
https://doi.org/10.1145/1837274.1837489
https://doi.org/10.1145/1837274.1837489
https://info.silexica.com/high-level-synthesis/1
https://github.com/google/xls/blob/dde7095ff1050b09c37cb44d1977bff1af8de050/xls/scheduling/mutual_exclusion_pass.h#L112
https://github.com/google/xls/blob/dde7095ff1050b09c37cb44d1977bff1af8de050/xls/scheduling/mutual_exclusion_pass.h#L112
https://github.com/google/xls/blob/dde7095ff1050b09c37cb44d1977bff1af8de050/xls/scheduling/mutual_exclusion_pass.h#L112
https://doi.org/10.1145/3622799
https://arxiv.org/abs/1905.03746
https://doi.org/10.1109/FCCM.2008.46
https://blog.google/products/pixel/google-tensor-g3-pixel-8/
https://blog.google/products/pixel/google-tensor-g3-pixel-8/
https://doi.org/10.1109/ICVD.2003.1183177
https://doi.org/10.1109/ICVD.2003.1183177
https://doi.org/10.1109/5.97300
https://doi.org/10.1109/5.97300

Bibliography

Yann Herklotz, Delphine Demange and Sandrine Blazy. 2023. ‘Mechanised Semantics for
Gated Static Single Assignment’. In: Proceedings of the 12th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP 2023). Association for Computing
Machinery, Boston, MA, USA, 182–196. isbn: 9798400700262. doi: 10.1145/3573105.357
5681 (cit. on p. 118).

Yann Herklotz, Zewei Du, Nadesh Ramanathan and John Wickerson. 2021. ‘An Empirical
Study of the Reliability of High-Level Synthesis Tools’. In: 2021 IEEE 29th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines (FCCM), 219–223.
doi: 10.1109/FCCM51124.2021.00034 (cit. on pp. 21, 63, 151).

Yann Herklotz, James D. Pollard, Nadesh Ramanathan and John Wickerson. Oct. 2021.
‘Formal Verification of High-Level Synthesis’. Proc. ACM Program. Lang., 5, OOPSLA,
(Oct. 2021). doi: 10.1145/3485494 (cit. on p. 63).

[SW] Yann Herklotz, James D. Pollard, Nadesh Ramanathan and John Wickerson, Vericert
v2.0.0-rc1 version v2.0.0-rc1, Jan. 2024. doi: 10.5281/zenodo.10541391, url: https://doi
.org/10.5281/zenodo.10541391 (cit. on p. 23).

Yann Herklotz and John Wickerson. 2020. ‘Finding and Understanding Bugs in FPGA
Synthesis Tools’. In: Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA ’20). Association for Computing Machinery,
Seaside, CA, USA, 277–287. isbn: 978-1-4503-7099-8. doi: 10.1145/3373087.3375310.

Yann Herklotz and John Wickerson. 2024. ‘Hyperblock Scheduling for Verified High-Level
Synthesis’. Submitted to PLDI 2024. (2024). https://yannherklotz.com/docs/drafts/ver
ified_hyperblock_scheduling.pdf (cit. on p. 89).

Benedict Herzog, Stefan Reif, Julian Preis, Wolfgang Schröder-Preikschat and Timo Hönig.
2021. ‘The Price of Meltdown and Spectre: Energy Overhead of Mitigations at Operating
System Level’. In: Proceedings of the 14th European Workshop on Systems Security (Euro-
Sec ’21). Association for Computing Machinery, Online, United Kingdom, 8–14. isbn:
9781450383370. doi: 10.1145/3447852.3458721 (cit. on p. 20).

C. A. R. Hoare. Aug. 1978. ‘Communicating Sequential Processes’. Commun. ACM, 21, 8,
(Aug. 1978), 666–677. doi: 10.1145/359576.359585 (cit. on p. 30).

Ekawat Homsirikamol and Kris Gaj. 2014. ‘Can high-level synthesis compete against a
hand-written code in the cryptographic domain? A case study’. In: ReConFig. IEEE, 1–8.
doi: 10.1109/ReConFig.2014.7032504 (cit. on p. 19).

Gregory Littell Hopwood. 1978. ‘Decompilation’. PhD thesis (cit. on p. 69). AAI7811860.
Enoch Hwang, Frank Vahid and Yu-Chin Hsu. 1999. ‘FSMD Functional Partitioning for

Low Power’. In: Proceedings of the conference on Design, automation and test in Europe,
7–es. doi: 10.1109/DATE.1999.761092 (cit. on pp. 48, 71).

Ed. by B. R. Rau and J. A. Fisher. ‘The Superblock: An Effective Technique for VLIW and
Superscalar Compilation’. Instruction-Level Parallelism: A Special Issue of The Journal
of Supercomputing. Springer US, Boston, MA, 229–248. isbn: 978-1-4615-3200-2. doi:
10.1007/978-1-4615-3200-2_7 (cit. on pp. 37, 60, 89).

IEEE. Apr. 2006. ‘IEEE Standard for Verilog Hardware Description Language’. IEEE Std
1364-2005 (Revision of IEEE Std 1364-2001), (Apr. 2006), 1–590. doi: 10.1109/IEEESTD.200
6.99495 (cit. on pp. 29, 79).

165

https://doi.org/10.1145/3573105.3575681
https://doi.org/10.1145/3573105.3575681
https://doi.org/10.1109/FCCM51124.2021.00034
https://doi.org/10.1145/3485494
https://doi.org/10.5281/zenodo.10541391
https://doi.org/10.5281/zenodo.10541391
https://doi.org/10.5281/zenodo.10541391
https://doi.org/10.1145/3373087.3375310
https://yannherklotz.com/docs/drafts/verified_hyperblock_scheduling.pdf
https://yannherklotz.com/docs/drafts/verified_hyperblock_scheduling.pdf
https://doi.org/10.1145/3447852.3458721
https://doi.org/10.1145/359576.359585
https://doi.org/10.1109/ReConFig.2014.7032504
https://doi.org/10.1109/DATE.1999.761092
https://doi.org/10.1007/978-1-4615-3200-2_7
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495

Bibliography

IEEE. 2005. ‘IEEE Standard for Verilog Register Transfer Level Synthesis’. IEC 62142-2005
First edition 2005-06 IEEE Std 1364.1, 1–116. doi: 10.1109/IEEESTD.2005.339572 (cit. on
p. 79).

Intel. 2020a. High-level Synthesis Compiler. (2020). Retrieved 18th Nov. 2020 from https:

//intel.ly/2UDiWr5 (cit. on pp. 19, 65).
Intel. 2020b. SDK for OpenCL Applications. (2020). Retrieved 20th July 2020 from https://i

ntel.ly/30sYHz0 (cit. on pp. 30, 32, 39, 44, 46).
He Jifeng, Ian Page and Jonathan Bowen. 1993. ‘Towards a provably correct hardware

implementation of occam’. In: Correct Hardware Design and Verification Methods. Ed. by
George J. Milne and Laurence Pierre. Springer Berlin Heidelberg, Berlin, Heidelberg,
214–225. isbn: 978-3-540-70655-7 (cit. on pp. 49, 50).

Lana Josipović, Philip Brisk and Paolo Ienne. Sept. 2017. ‘An Out-of-Order Load-Store
Queue for Spatial Computing’. ACM Trans. Embed. Comput. Syst., 16, 5s, Article 125,
(Sept. 2017), 19 pages. doi: 10.1145/3126525 (cit. on p. 41).

Lana Josipović, Radhika Ghosal and Paolo Ienne. 2018. ‘Dynamically Scheduled High-level
Synthesis’. In: Proceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’18). ACM, Monterey, CALIFORNIA, USA, 127–136.
isbn: 978-1-4503-5614-5. doi: 10.1145/3174243.3174264 (cit. on p. 41).

Lana Josipović, Shabnam Sheikhha, Andrea Guerrieri, Paolo Ienne and Jordi Cortadella. Nov.
2021. ‘Buffer Placement and Sizing for High-Performance Dataflow Circuits’. ACM Trans.
Reconfigurable Technol. Syst., 15, 1, Article 4, (Nov. 2021), 32 pages. doi: 10.1145/3477053
(cit. on p. 41).

Jacques-Henri Jourdan, François Pottier and Xavier Leroy. 2012. ‘Validating LR(1) Parsers’.
In: Programming Languages and Systems. Ed. by Helmut Seidl. Springer Berlin Heidelberg,
Berlin, Heidelberg, 397–416. isbn: 978-3-642-28869-2 (cit. on pp. 66, 77).

John B. Kam and Jeffrey D. Ullman. Jan. 1976. ‘Global Data Flow Analysis and Iterative
Algorithms’. J. ACM, 23, 1, (Jan. 1976), 158–171. doi: 10.1145/321921.321938 (cit. on
p. 34).

C Karfa, C Mandal, D Sarkar, S R. Pentakota and Chris Reade. 2006. ‘A Formal Verification
Method of Scheduling in High-level Synthesis’. In: Proceedings of the 7th International
Symposium on Quality Electronic Design (ISQED ’06). IEEE Computer Society, Washing-
ton, DC, USA, 71–78. isbn: 0-7695-2523-7. doi: 10.1109/ISQED.2006.10 (cit. on pp. 21,
45, 47).

C. Karfa, D. Sarkar and C. Mandal. Mar. 2010. ‘Verification of Datapath and Controller
Generation Phase in High-Level Synthesis of Digital Circuits’. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 29, 3, (Mar. 2010), 479–492.
doi: 10.1109/TCAD.2009.2035542 (cit. on p. 47).

C. Karfa, D. Sarkar, C. Mandal and P. Kumar. Mar. 2008. ‘An Equivalence-Checking Method
for Scheduling Verification in High-Level Synthesis’. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 27, 3, (Mar. 2008), 556–569. doi: 10.1109
/TCAD.2007.913390 (cit. on p. 47).

166

https://doi.org/10.1109/IEEESTD.2005.339572
https://intel.ly/2UDiWr5
https://intel.ly/2UDiWr5
https://intel.ly/30sYHz0
https://intel.ly/30sYHz0
https://doi.org/10.1145/3126525
https://doi.org/10.1145/3174243.3174264
https://doi.org/10.1145/3477053
https://doi.org/10.1145/321921.321938
https://doi.org/10.1109/ISQED.2006.10
https://doi.org/10.1109/TCAD.2009.2035542
https://doi.org/10.1109/TCAD.2007.913390
https://doi.org/10.1109/TCAD.2007.913390

Bibliography

Chandan Karfa, Chittaranjan Mandal and Dipankar Sarkar. July 2012. ‘Formal Verification
of Code Motion Techniques Using Data-Flow-Driven Equivalence Checking’. ACM Trans.
Des. Autom. Electron. Syst., 17, 3, (July 2012). doi: 10.1145/2209291.2209303 (cit. on p. 47).

Chandan Karfa, Dipankar Sarkar, Chittaranjan Mandal and Chris Reade. 2007. ‘Hand-in-
hand Verification of High-level Synthesis’. In: Proceedings of the 17th ACM Great Lakes
Symposium on VLSI (GLSVLSI ’07). ACM, Stresa-Lago Maggiore, Italy, 429–434. isbn:
978-1-59593-605-9. doi: 10.1145/1228784.1228885 (cit. on p. 47).

Gary A. Kildall. 1973. ‘A Unified Approach to Global Program Optimization’. In: Proceedings
of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL ’73). Association for Computing Machinery, Boston, Massachusetts,
194–206. isbn: 9781450373494. doi: 10.1145/512927.512945 (cit. on p. 34).

Gerwin Klein, Kevin Elphinstone, Gernot Heiser et al.. 2009. ‘seL4: formal verification of
an OS kernel’. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles (SOSP ’09). Association for Computing Machinery, Big Sky, Montana, USA,
207–220. isbn: 9781605587523. doi: 10.1145/1629575.1629596 (cit. on p. 43).

Alfred Koelbl, Reily Jacoby, Himanshu Jain and Carl Pixley. Apr. 2009. ‘Solver technology
for system-level to RTL equivalence checking’. In: 2009 Design, Automation & Test in
Europe Conference & Exhibition. (Apr. 2009), 196–201. doi: 10.1109/DATE.2009.5090657
(cit. on p. 42).

[SW] Alfred Koelbl, Kiran Vittal and Pratik Mahajan, Verifying Complex Datapath Designs
with HECTOR 23rd Feb. 2021. Synopsys. url: https://www.synopsys.com/blogs/chip-d
esign/verifying-complex-datapath-designs-with-hector.html (cit. on p. 47).

Jérémie Koenig and Zhong Shao. 2021. ‘CompCertO: Compiling Certified Open C Compon-
ents’. In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI 2021). Association for Computing Machinery,
Virtual, Canada, 1095–1109. isbn: 9781450383912. doi: 10.1145/3453483.3454097 (cit. on
p. 157).

David Koeplinger, Matthew Feldman, Raghu Prabhakar et al.. 2018. ‘Spatial: A Language
and Compiler for Application Accelerators’. In: PLDI. ACM, 296–311. doi: 10.1145/3192
366.3192379 (cit. on p. 66).

Daniel Kroening and Michael Tautschnig. 2014. ‘CBMC – C Bounded Model Checker’. In:
Tools and Algorithms for the Construction and Analysis of Systems. Ed. by Erika Ábrahám
and Klaus Havelund. Springer Berlin Heidelberg, Berlin, Heidelberg, 389–391. isbn:
978-3-642-54862-8 (cit. on p. 42).

Sudipta Kundu, Sorin Lerner and Rajesh Gupta. 2008. ‘Validating High-Level Synthesis’.
In: Computer Aided Verification. Ed. by Aarti Gupta and Sharad Malik. Springer Berlin
Heidelberg, Berlin, Heidelberg, 459–472. isbn: 978-3-540-70545-1 (cit. on pp. 46, 47).

S. Lahti, P. Sjövall, J. Vanne and T. D. Hämäläinen. May 2019. ‘Are We There Yet? a Study
on the State of High-Level Synthesis’. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 38, 5, (May 2019), 898–911. doi: 10.1109/TCAD.2018.283
4439 (cit. on p. 20).

167

https://doi.org/10.1145/2209291.2209303
https://doi.org/10.1145/1228784.1228885
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1109/DATE.2009.5090657
https://www.synopsys.com/blogs/chip-design/verifying-complex-datapath-designs-with-hector.html
https://www.synopsys.com/blogs/chip-design/verifying-complex-datapath-designs-with-hector.html
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1145/3192366.3192379
https://doi.org/10.1145/3192366.3192379
https://doi.org/10.1109/TCAD.2018.2834439
https://doi.org/10.1109/TCAD.2018.2834439

Bibliography

C. Lattner and V. Adve. 2004. ‘LLVM: a compilation framework for lifelong program analysis
& transformation’. In: International Symposium on Code Generation and Optimization,
2004. CGO 2004. 75–86. doi: 10.1109/CGO.2004.1281665 (cit. on p. 31).

Chris Lattner, Mehdi Amini, Uday Bondhugula et al.. Feb. 2021. ‘MLIR: Scaling Compiler
Infrastructure for Domain Specific Computation’. In: 2021 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO). (Feb. 2021), 2–14. doi: 10.1109/CGO5
1591.2021.9370308 (cit. on p. 31).

Marco Lattuada and Fabrizio Ferrandi. 2015. ‘Code Transformations Based on Speculative
SDC Scheduling’. In: 2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 71–77. doi: 10.1109/ICCAD.2015.7372552 (cit. on p. 41).

K. Rustan M. Leino. 2010. ‘Dafny: An Automatic Program Verifier for Functional Correct-
ness’. In: Logic for Programming, Artificial Intelligence, and Reasoning. Ed. by Edmund M.
Clarke and Andrei Voronkov. Springer Berlin Heidelberg, Berlin, Heidelberg, 348–370.
isbn: 978-3-642-17511-4 (cit. on p. 42).

Xavier Leroy. 2009a. ‘A Formally Verified Compiler Back-End’. Journal of Automated
Reasoning, 43, 4, 363. doi: 10.1007/s10817-009-9155-4 (cit. on p. 97).

Xavier Leroy. 2006. ‘Formal Certification of a Compiler Back-End or: Programming a
Compiler with a Proof Assistant’. In: Conference Record of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’06). Association for
Computing Machinery, Charleston, South Carolina, USA, 42–54. isbn: 1595930272. doi:
10.1145/1111037.1111042 (cit. on pp. 21, 51).

Xavier Leroy. July 2009b. ‘Formal Verification of a Realistic Compiler’. Commun. ACM, 52,
7, (July 2009), 107–115. doi: 10.1145/1538788.1538814 (cit. on pp. 21, 51, 65, 66).

Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister and
Christian Ferdinand. Jan. 2016. ‘CompCert - A Formally Verified Optimizing Compiler’.
In: ERTS 2016: Embedded Real Time Software and Systems, 8th European Congress. SEE.
Toulouse, France, (Jan. 2016). https://inria.hal.science/hal-01238879 (cit. on pp. 21,
51).

Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen and Jian Zhang. 2018. ‘Fuzzing:
State of the art’. IEEE Transactions on Reliability, 67, 3, 1199–1218. doi: 10.1109/TR.2018
.2834476 (cit. on p. 63).

Christopher Lidbury, Andrei Lascu, Nathan Chong and Alastair F. Donaldson. 2015. ‘Many-
Core Compiler Fuzzing’. In: Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’15). Association for Computing
Machinery, Portland, OR, USA, 65–76. isbn: 9781450334686. doi: 10.1145/2737924.2737
986 (cit. on pp. 20, 63).

Andreas Lööw. 2021. ‘Lutsig: A Verified Verilog Compiler for Verified Circuit Development’.
In: Proceedings of the 10th ACM SIGPLAN International Conference on Certified Programs
and Proofs (CPP 2021). Association for Computing Machinery, Virtual, Denmark, 46–60.
isbn: 9781450382991. doi: 10.1145/3437992.3439916 (cit. on pp. 45, 46, 50, 157).

Andreas Lööw, Ramana Kumar, Yong Kiam Tan, Magnus O. Myreen, Michael Norrish, Oskar
Abrahamsson and Anthony Fox. 2019. ‘Verified Compilation on a Verified Processor’.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design

168

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/ICCAD.2015.7372552
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1145/1538788.1538814
https://inria.hal.science/hal-01238879
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/3437992.3439916

Bibliography

and Implementation (PLDI 2019). ACM, Phoenix, AZ, USA, 1041–1053. isbn: 978-1-4503-
6712-7. doi: 10.1145/3314221.3314622 (cit. on pp. 45, 66, 79).

Andreas Lööw and Magnus O. Myreen. 2019. ‘A Proof-producing Translator for Verilog
Development inHOL’. In: Proceedings of the 7th InternationalWorkshop on FormalMethods
in Software Engineering (FormaliSE ’19). IEEE Press, Montreal, Quebec, Canada, 99–108.
doi: 10.1109/FormaliSE.2019.00020 (cit. on pp. 22, 45, 79, 81, 88).

Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank and Roger A. Bringmann.
Dec. 1992. ‘Effective Compiler Support for Predicated Execution Using the Hyperblock’.
SIGMICRO Newsl., 23, 1-2, (Dec. 1992), 45–54. doi: 10.1145/144965.144998 (cit. on pp. 38,
89).

P. Meredith, M. Katelman, J. Meseguer and G. Roşu. July 2010. ‘A formal executable
semantics of Verilog’. In: Eighth ACM/IEEE International Conference on Formal Methods
and Models for Codesign (MEMOCODE 2010). (July 2010), 179–188. doi: 10.1109/MEMCOD.2
010.5558634 (cit. on pp. 66, 79).

David Monniaux and Sylvain Boulmé. 2022. ‘The Trusted Computing Base of the CompCert
Verified Compiler’. In: Programming Languages and Systems. Ed. by Ilya Sergey. Springer
International Publishing, Cham, 204–233. isbn: 978-3-030-99336-8. doi: 10.1007/978-3-
030-99336-8_8 (cit. on p. 77).

Leonardo de Moura and Nikolaj Bjørner. 2008. ‘Z3: An Efficient SMT Solver’. In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by C. R. Ramakrishnan and
Jakob Rehof. Springer Berlin Heidelberg, Berlin, Heidelberg, 337–340. isbn: 978-3-540-
78800-3 (cit. on p. 42).

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn and Jakob von Raumer.
2015. ‘The Lean Theorem Prover (System Description)’. In: Automated Deduction - CADE-
25. Ed. by Amy P. Felty and Aart Middeldorp. Springer International Publishing, Cham,
378–388. isbn: 978-3-319-21401-6. doi: 10.1007/978-3-319-21401-6_26 (cit. on p. 43).

Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer, Yuwei Ye,
Apurva Koti, Adrian Sampson and Zhiru Zhang. 2020. ‘Predictable Accelerator Design
with Time-Sensitive Affine Types’. In: Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2020). Association for
Computing Machinery, London, UK, 393–407. isbn: 9781450376136. doi: 10.1145/338541
2.3385974 (cit. on pp. 44, 46).

R. Nikhil. 2004. ‘Bluespec System Verilog: efficient, correct RTL from high level specifica-
tions’. In: Proceedings. Second ACM and IEEE International Conference on Formal Methods
and Models for Co-Design, 2004. MEMOCODE ’04. 69–70. doi: 10.1109/MEMCOD.2004.1459
818 (cit. on pp. 32, 66).

D. H. Noronha, J. P. Pinilla and S. J. E. Wilton. 2017. ‘Rapid circuit-specific inlining tuning
for FPGA high-level synthesis’. In: 2017 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), 1–6. doi: 10.1109/RECONFIG.2017.8279807 (cit. on
p. 69).

Karl J. Ottenstein, Robert A. Ballance and Arthur B. MacCabe. 1990. ‘The Program De-
pendence Web: A Representation Supporting Control-, Data-, and Demand-Driven
Interpretation of Imperative Languages’. In: Proceedings of the ACM SIGPLAN 1990 Con-

169

https://doi.org/10.1145/3314221.3314622
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/10.1145/144965.144998
https://doi.org/10.1109/MEMCOD.2010.5558634
https://doi.org/10.1109/MEMCOD.2010.5558634
https://doi.org/10.1007/978-3-030-99336-8_8
https://doi.org/10.1007/978-3-030-99336-8_8
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1145/3385412.3385974
https://doi.org/10.1145/3385412.3385974
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/RECONFIG.2017.8279807

Bibliography

ference on Programming Language Design and Implementation (PLDI ’90). Association
for Computing Machinery, White Plains, New York, USA, 257–271. isbn: 0897913647.
doi: 10.1145/93542.93578 (cit. on p. 35).

J. Ou and V.K. Prasanna. Apr. 2005. ‘MATLAB/Simulink based hardware/software co-
simulation for designing using FPGA configured soft processors’. In: 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium. (Apr. 2005). doi: 10.1109/IPDPS.20
05.275 (cit. on p. 30).

Ian Page and Wayne Luk. 1991. ‘Compiling occam into field-programmable gate arrays’. In:
FPGAs, Oxford Workshop on Field Programmable Logic and Applications. Vol. 15. Citeseer,
271–283 (cit. on pp. 48, 50, 66).

Barry M. Pangrle and Daniel D. Gajski. 1987. ‘Design Tools for Intelligent Silicon Com-
pilation’. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 6, 6, 1098–1112. doi:
10.1109/TCAD.1987.1270350 (cit. on p. 91).

Michalis Pardalos, Yann Herklotz and John Wickerson. 2022. ‘Resource Sharing for Verified
High-Level Synthesis’. In: 2022 IEEE 30th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 1–6. doi: 10.1109/FCCM53951
.2022.9786208.

Lawrence C Paulson. 1994. Isabelle: A generic theorem prover. Springer (cit. on p. 43).
Maxime Pelcat, Cédric Bourrasset, Luca Maggiani and François Berry. 2016. ‘Design pro-

ductivity of a high level synthesis compiler versus HDL’. In: 2016 International Conference
on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS), 140–
147. doi: 10.1109/SAMOS.2016.7818341 (cit. on p. 19).

Juan Perna and Jim Woodcock. 2012. ‘Mechanised Wire-Wise Verification of Handel-C
Synthesis’. Science of Computer Programming, 77, 4, 424–443. doi: 10.1016/j.scico.2010
.02.007 (cit. on pp. 45, 46, 50).

Juan Perna, Jim Woodcock, Augusto Sampaio and Juliano Iyoda. 1st Dec. 2011. ‘Correct
Hardware Synthesis’. Acta Informatica, 48, 7, (1st Dec. 2011), 363–396. doi: 10.1007/s00
236-011-0142-y (cit. on p. 45).

C. Pilato and F. Ferrandi. 2013. ‘Bambu: A modular framework for the high level synthesis
of memory-intensive applications’. In: 2013 23rd International Conference on Field pro-
grammable Logic and Applications, 1–4. doi: 10.1109/FPL.2013.6645550 (cit. on pp. 19,
23, 32, 65, 145).

A. Pnueli, M. Siegel and E. Singerman. 1998. ‘Translation validation’. In: Tools and Algorithms
for the Construction and Analysis of Systems. Ed. by Bernhard Steffen. Springer Berlin
Heidelberg, Berlin, Heidelberg, 151–166. isbn: 978-3-540-69753-4 (cit. on pp. 21, 44, 47).

Louis-Noël Pouchet. 2020. PolyBench/C: the Polyhedral Benchmark suite. (2020). http://web
.cse.ohio-state.edu/~pouchet.2/software/polybench/ (cit. on p. 146).

Louis-Noel Pouchet, Peng Zhang, Ponnuswamy Sadayappan and JasonCong. 2013. ‘Polyhedral-
based data reuse optimization for configurable computing’. In: Proceedings of the ACM/SIGDA
international symposium on Field programmable gate arrays, 29–38. doi: https://doi.or
g/10.1145/2435264.2435273 (cit. on p. 146).

B. R. Rau,M. Lee, P. P. Tirumalai andM. S. Schlansker. 1992. ‘Register Allocation for Software
Pipelined Loops’. In: Proceedings of the ACM SIGPLAN 1992 Conference on Programming

170

https://doi.org/10.1145/93542.93578
https://doi.org/10.1109/IPDPS.2005.275
https://doi.org/10.1109/IPDPS.2005.275
https://doi.org/10.1109/TCAD.1987.1270350
https://doi.org/10.1109/FCCM53951.2022.9786208
https://doi.org/10.1109/FCCM53951.2022.9786208
https://doi.org/10.1109/SAMOS.2016.7818341
https://doi.org/10.1016/j.scico.2010.02.007
https://doi.org/10.1016/j.scico.2010.02.007
https://doi.org/10.1007/s00236-011-0142-y
https://doi.org/10.1007/s00236-011-0142-y
https://doi.org/10.1109/FPL.2013.6645550
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://doi.org/https://doi.org/10.1145/2435264.2435273
https://doi.org/https://doi.org/10.1145/2435264.2435273

Bibliography

Language Design and Implementation (PLDI ’92). Association for Computing Machinery,
San Francisco, California, USA, 283–299. isbn: 0897914759. doi: 10.1145/143095.143141
(cit. on p. 155).

B. Ramakrishna Rau. 1st Feb. 1996. ‘Iterative Modulo Scheduling’. International Journal of
Parallel Programming, 24, 1, (1st Feb. 1996), 3–64. doi: 10.1007/BF03356742 (cit. on p. 40).

B. Ramakrishna Rau, Michael S. Schlansker and P. P. Tirumalai. 1992. ‘Code Generation
Schema for modulo Scheduled Loops’. In: Proceedings of the 25th Annual International
Symposium on Microarchitecture (MICRO 25). IEEE Computer Society Press, Portland,
Oregon, USA, 158–169. isbn: 0818631759 (cit. on p. 155).

Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi and
Jeremy Kepner. 2020. ‘Survey of Machine Learning Accelerators’. In: 2020 IEEE High
Performance Extreme Computing Conference (HPEC), 1–12. doi: 10.1109/HPEC43674.2020
.9286149 (cit. on p. 19).

Carmine Rizzi, Andrea Guerrieri and Lana Josipović. July 2023. ‘An Iterative Method for
Mapping-Aware Frequency Regulation in Dataflow Circuits’. In: Proceedings of the 60rd
ACM/IEEE Design Automation Conference. San Francisco, CA, (July 2023) (cit. on p. 149).

Jeff Roane. 2023. Automated HW/SW Co-Design of DSP Systems Composed of Processors and
Hardware Accelerators. Tech. rep. Cadence. Retrieved 14th Dec. 2023 from https://www.c

adence.com/en_US/home/resources/white-papers/automated-hw-sw-co-design-of-dsp

-systems-composed-of-processors-and-hardware-accelerators-wp.html (cit. on pp. 19,
39).

Fabian Schuiki, Andreas Kurth, Tobias Grosser and Luca Benini. 2020. ‘LLHD: AMulti-Level
Intermediate Representation for Hardware Description Languages’. In: Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2020). ACM, London, UK, 258–271. isbn: 9781450376136. doi: 10.1145/3385412.33
86024 (cit. on p. 66).

Koushik Sen, George Necula, Liang Gong and Wontae Choi. 2015. ‘MultiSE: Multi-Path
Symbolic Execution Using Value Summaries’. In: Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2015). Association for Computing
Machinery, Bergamo, Italy, 842–853. isbn: 9781450336758. doi: 10.1145/2786805.2786830
(cit. on pp. 101, 107).

Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan and Peter
Sewell. June 2013. ‘CompCertTSO: A Verified Compiler for Relaxed-Memory Concur-
rency’. J. ACM, 60, 3, (June 2013). doi: 10.1145/2487241.2487248 (cit. on p. 86).

Siemens. 2021. Catapult High-Level Synthesis. (2021). Retrieved 14th Nov. 2023 from https:

//eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/ (cit. on
pp. 21, 32, 39, 45, 46).

Cyril Six, Sylvain Boulmé and David Monniaux. Nov. 2020. ‘Certified and Efficient Instruc-
tion Scheduling: Application to Interlocked VLIW Processors’. Proc. ACM Program. Lang.,
4, OOPSLA, (Nov. 2020). doi: 10.1145/3428197 (cit. on pp. 58–60).

[SW] Cyril Six, Léo Gourdin, Benjamin Bonneau, Alexandre Bérard, Sylvain Boulmé and
David Monniaux, CompCert KVX 2023. Grenoble-INP, CNRS and Kalray. url: https:
//www-verimag.imag.fr/the-KVX-CompCert-Compiler.html (cit. on p. 58).

171

https://doi.org/10.1145/143095.143141
https://doi.org/10.1007/BF03356742
https://doi.org/10.1109/HPEC43674.2020.9286149
https://doi.org/10.1109/HPEC43674.2020.9286149
https://www.cadence.com/en_US/home/resources/white-papers/automated-hw-sw-co-design-of-dsp-systems-composed-of-processors-and-hardware-accelerators-wp.html
https://www.cadence.com/en_US/home/resources/white-papers/automated-hw-sw-co-design-of-dsp-systems-composed-of-processors-and-hardware-accelerators-wp.html
https://www.cadence.com/en_US/home/resources/white-papers/automated-hw-sw-co-design-of-dsp-systems-composed-of-processors-and-hardware-accelerators-wp.html
https://doi.org/10.1145/3385412.3386024
https://doi.org/10.1145/3385412.3386024
https://doi.org/10.1145/2786805.2786830
https://doi.org/10.1145/2487241.2487248
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://doi.org/10.1145/3428197
https://www-verimag.imag.fr/the-KVX-CompCert-Compiler.html
https://www-verimag.imag.fr/the-KVX-CompCert-Compiler.html

Bibliography

Cyril Six, Léo Gourdin, Sylvain Boulmé, David Monniaux, Justus Fasse and Nicolas Nardino.
2022. ‘Formally Verified Superblock Scheduling’. In: Proceedings of the 11th ACM SIGPLAN
International Conference on Certified Programs and Proofs (CPP 2022). Association for
Computing Machinery, Philadelphia, PA, USA, 40–54. isbn: 9781450391825. doi: 10.114
5/3497775.3503679 (cit. on pp. 23, 60, 89, 91, 92, 114, 115, 146).

Sudipta Kundu, S. Lerner and Rajesh Gupta. Nov. 2007. ‘Automated refinement checking
of concurrent systems’. In: 2007 IEEE/ACM International Conference on Computer-Aided
Design. (Nov. 2007), 318–325. doi: 10.1109/ICCAD.2007.4397284 (cit. on p. 47).

Chengnian Sun, Vu Le, Qirun Zhang and Zhendong Su. 2016. ‘Toward Understanding
Compiler Bugs in GCC and LLVM’. In: Proceedings of the 25th International Symposium
on Software Testing and Analysis, 294–305. doi: 10.1145/2931037.2931074 (cit. on p. 63).

[SW] Synopsys, VC Formal: Leading Formal Innovations 2023. url: https://www.syno
psys.com/verification/static-and-formal-verification/vc-formal.htmlRetrieved
20th Dec. 2023 from (cit. on p. 42).

Mingxing Tan, Steve Dai, Udit Gupta and Zhiru Zhang. Feb. 2015. ‘Mapping-aware con-
strained scheduling for LUT-based FPGAs’. In: Proceedings of the 23rd ACM/SIGDA
International Symposium on Field Programmable Gate Arrays. Monterey, CA, (Feb. 2015),
190–9 (cit. on p. 149).

David B. Thomas. 2016. ‘Synthesisable Recursion for C++ HLS Tools’. In: ASAP. IEEE
Computer Society, 91–98. doi: 10.1109/ASAP.2016.7760777 (cit. on p. 69).

Jean-Baptiste Tristan and Xavier Leroy. 2010. ‘A Simple, Verified Validator for Software
Pipelining’. In: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’10). Association for Computing Machinery,
Madrid, Spain, 83–92. isbn: 9781605584799. doi: 10.1145/1706299.1706311 (cit. on p. 155).

Jean-Baptiste Tristan and Xavier Leroy. 2008. ‘Formal Verification of Translation Validators:
A Case Study on Instruction Scheduling Optimizations’. In: Proceedings of the 35th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’08).
Association for Computing Machinery, San Francisco, California, USA, 17–27. isbn:
9781595936899. doi: 10.1145/1328438.1328444 (cit. on pp. 21, 23, 58, 59, 89, 91, 92, 100,
104, 105, 109, 114, 115).

Peng Tu and David Padua. 1995. ‘Efficient Building and Placing of Gating Functions’. In:
Proceedings of the ACM SIGPLAN 1995 Conference on Programming Language Design and
Implementation (PLDI ’95). Association for Computing Machinery, La Jolla, California,
USA, 47–55. isbn: 0897916972. doi: 10.1145/207110.207115 (cit. on p. 35).

Ecenur Ustun, Chenhui Deng, Debjit Pal, Zhijing Li and Zhiru Zhang. Nov. 2020. ‘Accurate
operation delay prediction for FPGA HLS using graph neural networks’. In: Proceedings
of the 39th International Conference on Computer-Aided Design. Virtual, (Nov. 2020), 1–9
(cit. on p. 149).

Hanyu Wang, Carmine Rizzi and Lana Josipović. Oct. 2023. ‘MapBuf: Simultaneous Techno-
logy Mapping and Buffer Insertion for HLS Performance Optimization’. In: Proceedings
of the 42nd IEEE/ACM Intl. Conference on Computer-Aided Design. San Francisco, CA,
(Oct. 2023) (cit. on p. 149).

172

https://doi.org/10.1145/3497775.3503679
https://doi.org/10.1145/3497775.3503679
https://doi.org/10.1109/ICCAD.2007.4397284
https://doi.org/10.1145/2931037.2931074
https://www.synopsys.com/verification/static-and-formal-verification/vc-formal.html
https://www.synopsys.com/verification/static-and-formal-verification/vc-formal.html
https://doi.org/10.1109/ASAP.2016.7760777
https://doi.org/10.1145/1706299.1706311
https://doi.org/10.1145/1328438.1328444
https://doi.org/10.1145/207110.207115

Bibliography

Yuting Wang, Xiangzhe Xu, Pierre Wilke and Zhong Shao. Nov. 2020. ‘CompCertELF:
Verified Separate Compilation of C Programs into ELF Object Files’. Proc. ACM Program.
Lang., 4, OOPSLA, (Nov. 2020). doi: 10.1145/3428265 (cit. on p. 86).

Neil H. E. Weste and David Money Harris. 2010. CMOS VLSI Design: A Circuits and Systems
Perspective. Pearson. isbn: 9780321547743 (cit. on p. 79).

Xuejun Yang, Yang Chen, Eric Eide and John Regehr. 2011. ‘Finding and Understanding Bugs
in C Compilers’. In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’11). Association for Computing Machinery,
San Jose, California, USA, 283–294. isbn: 9781450306638. doi: 10.1145/1993498.1993532
(cit. on pp. 21, 49, 63, 77, 151).

[SW] YosysHQ, SymbiYosys (sby) 2023. url: https://github.com/YosysHQ/SymbiYosys
Retrieved 20th Dec. 2023 from (cit. on p. 42).

Youngsik Kim, S. Kopuri and N. Mansouri. Mar. 2004. ‘Automated formal verification of
scheduling process using finite state machines with datapath (FSMD)’. In: International
Symposium on Signals, Circuits and Systems. Proceedings, SCS 2003. (Cat. No.03EX720).
(Mar. 2004), 110–115. doi: 10.1109/ISQED.2004.1283659 (cit. on pp. 21, 45, 47).

Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu and Zhendong Su. 2019.
‘Finding and Understanding Bugs in Software Model Checkers’. In: Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 763–773. doi: 10.1145/3338906.3338932 (cit. on
p. 63).

Zhiru Zhang and Bin Liu. Nov. 2013. ‘SDC-based modulo scheduling for pipeline synthesis’.
In: 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). (Nov.
2013), 211–218. doi: 10.1109/ICCAD.2013.6691121 (cit. on pp. 40, 118).

Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin and Steve Zdancewic. 2012. ‘Form-
alizing the LLVM Intermediate Representation for Verified Program Transformations’.
In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’12). Association for Computing Machinery, Philadelphia,
PA, USA, 427–440. isbn: 9781450310833. doi: 10.1145/2103656.2103709 (cit. on p. 66).

Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang and Bingsheng He. 2017.
‘COMBA: A comprehensive model-based analysis framework for high level synthesis of
real applications’. In: 2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 430–437. doi: 10.1109/ICCAD.2017.8203809 (cit. on p. 146).

Hongbin Zheng, Swathi T. Gurumani, Kyle Rupnow and Deming Chen. 2014. ‘Fast and Ef-
fective Placement and Routing Directed High-Level Synthesis for FPGAs’. In: Proceedings
of the 2014 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA ’14). Association for Computing Machinery, Monterey, California, USA, 1–10.
isbn: 9781450326711. doi: 10.1145/2554688.2554775 (cit. on p. 149).

W. Zuo, P. Li, D. Chen, L. Pouchet, Shunan Zhong and J. Cong. Sept. 2013. ‘Improving
polyhedral code generation for high-level synthesis’. In: 2013 International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS). (Sept. 2013), 1–10.
doi: 10.1109/CODES-ISSS.2013.6659002 (cit. on p. 146).

173

https://doi.org/10.1145/3428265
https://doi.org/10.1145/1993498.1993532
https://github.com/YosysHQ/SymbiYosys
https://github.com/YosysHQ/SymbiYosys
https://doi.org/10.1109/ISQED.2004.1283659
https://doi.org/10.1145/3338906.3338932
https://doi.org/10.1109/ICCAD.2013.6691121
https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1109/ICCAD.2017.8203809
https://doi.org/10.1145/2554688.2554775
https://doi.org/10.1109/CODES-ISSS.2013.6659002

Index

B

basic block 36, 37, 58

C

CompCert 10, 13, 21, 22, 24, 25, 27, 51, 52,
63, 65–70, 72, 77–79, 83, 84, 86, 87,
121, 123–125, 128, 153, 155, 156

control flow 34, 61

D

data flow 34
dynamic scheduling 38, 41

H

hyperblock 37–39, 61
hyperblock scheduling 25, see also

hyperblock & scheduling

L

list scheduling 39, see also scheduling

O

operation chaining 40

P

‘plus’ forward simulation 121
predicated instruction 38

S

superblock 37, 38, 61
superblock scheduling see also superblock &

scheduling

T

translation validation 21

175

Index

176

	Copyright Assignment
	Statement of Originality
	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Research Contributions
	Dissertation Outline
	Publications

	Background
	Field Programmable Gate Arrays
	An Introduction to Verilog
	High-Level Synthesis
	Data structures for intermediate languages
	Grouping instructions into blocks

	Scheduling
	Static scheduling
	Dynamic scheduling

	Verification
	Automatic theorem provers
	Interactive theorem provers

	Verification of High-Level Synthesis
	Unmechanised verification of HLS
	Mechanised compiler proofs in high-level hardware design
	HLS formalised in Isabelle

	CompCert
	CompCert correctness theorem
	Instruction scheduling in CompCert
	Trace scheduling

	Summary

	Introduction to Vericert
	Unreliability of High-Level Synthesis
	Main Design Decisions of Vericert
	Translating C to Verilog by Example
	Translating C to Rtl
	Scheduling Rtl instructions
	Translating RtlPar to Htl
	Translating Htl to Verilog

	Trusted Computing Base
	Formulating the Correctness Theorem
	A Formal Semantics for Verilog
	Changes to the semantics
	Integrating the Verilog semantics into CompCert's model
	Memory model
	Deterministic Verilog semantics

	Summary

	Verified Hyperblock Scheduling
	Overview
	New Intermediate Languages
	Verified If-Conversion
	Implementing Hyperblock Scheduling
	Validation of Hyperblock Scheduling
	First attempt: basic symbolic execution
	Second attempt: using value summaries
	Third attempt: using value summaries and final-state guards
	Handling overwritten expressions
	Formalising the symbolic state and symbolic execution
	Defining a Verified Scheduler

	Proving the Validator Correct
	A semantics for symbolic states
	Establishing the chain of simulations
	Managing complexity in the proof

	Related Work
	Validated three-valued Logic Using an SMT Solver
	Summary

	Hardware Generation
	Hyperblock Destruction
	Proof of hyperblock destruction

	Htl Generation
	Htl structure and semantics
	Htl generation algorithm
	Htl generation correctness proof

	BRAM insertion
	BRAM model semantics
	BRAM insertion and correctness proof

	Register Forward Substitution
	Forward substitution correctness proof

	Verilog Generation
	Forward simulation from Htl to Verilog

	Summary

	Evaluation
	Experimental Setup
	RQ1: Is Vericert Competitive With Unverified Tools
	RQ2: Area and Delay Improvements of Vericert
	RQ3: Hyperblock Scheduling Compared to Naïve Scheduling
	RQ4: Compilation Times of Vericert
	RQ5: Effectiveness of Vericert's Correctness Theorem
	Summary

	Conclusion
	Coq mechanisation
	Limitations and Future Work
	Limitations to the generated hardware
	Limitations on the software input
	The Future of Vericert

	Summary

	Bibliography
	Index
	B
	C
	D
	H
	L
	O
	P
	S
	T

