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High-level synthesis (HLS), which refers to the automatic compilation of software into hardware, is rapidly

gaining popularity. In a world increasingly reliant on application-specific hardware accelerators, HLS promises

hardware designs of comparable performance and energy efficiency to those coded by hand in a hardware

description language such as Verilog, while maintaining the convenience and the rich ecosystem of software

development. However, current HLS tools cannot always guarantee that the hardware designs they produce are

equivalent to the software they were given, thus undermining any reasoning conducted at the software level.

Furthermore, there is mounting evidence that existing HLS tools are quite unreliable, sometimes generating

wrong hardware or crashing when given valid inputs.

To address this problem, we present the first HLS tool that is mechanically verified to preserve the behaviour

of its input software. Our tool, called Vericert, extends the CompCert verified C compiler with a new hardware-

oriented intermediate language and a Verilog back end, and has been proven correct in Coq. Vericert supports

most C constructs, including all integer operations, function calls, local arrays, structs, unions, and general

control-flow statements. An evaluation on the PolyBench/C benchmark suite indicates that Vericert generates

hardware that is around an order of magnitude slower (only around 2× slower in the absence of division) and

about the same size as hardware generated by an existing, optimising (but unverified) HLS tool.
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engineering → Formal software verification; • Theory of computation→ Program verification.
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1 INTRODUCTION
Can you trust your high-level synthesis tool? As latency, throughput, and energy efficiency become

increasingly important, custom hardware accelerators are being designed for numerous applications.

Alas, designing these accelerators can be a tedious and error-prone process using a hardware

description language (HDL) such as Verilog. An attractive alternative is high-level synthesis (HLS),
in which hardware designs are automatically compiled from software written in a high-level

language like C. Modern HLS tools such as LegUp [Canis et al. 2011], Vivado HLS [Xilinx 2020],

Intel i++ [Intel 2020a], and Bambu HLS [Pilato and Ferrandi 2013] promise designs with comparable

performance and energy-efficiency to those hand-written in an HDL [Gauthier and Wadood 2020;
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Homsirikamol and Gaj 2014; Pelcat et al. 2016], while offering the convenient abstractions and rich

ecosystems of software development. But existing HLS tools cannot always guarantee that the

hardware designs they produce are equivalent to the software they were given, and this undermines

any reasoning conducted at the software level.

Indeed, there are reasons to doubt that HLS tools actually do always preserve equivalence. For
instance, Vivado HLS has been shown to apply pipelining optimisations incorrectly

1
or to silently

generate wrong code should the programmer stray outside the fragment of C that it supports.
2

Meanwhile, Lidbury et al. [2015] had to abandon their attempt to fuzz-test Altera’s (now Intel’s)

OpenCL compiler since it “either crashed or emitted an internal compiler error” on so many of

their test inputs. More recently, Herklotz et al. [2021a] fuzz-tested three commercial HLS tools

using Csmith [Yang et al. 2011], and despite restricting the generated programs to the C fragment

explicitly supported by all the tools, they still found that on average 2.5% of test-cases were compiled

to designs that behaved incorrectly.

Existing workarounds. Aware of the reliability shortcomings of HLS tools, hardware designers

routinely check the generated hardware for functional correctness. This is commonly done by

simulating the generated design against a large test-bench. But unless the test-bench covers all

inputs exhaustively – which is often infeasible – there is a risk that bugs remain.

One alternative is to use translation validation [Pnueli et al. 1998] to prove equivalence between

the input program and the output design. Translation validation has been successfully applied

to several HLS optimisations [Banerjee et al. 2014; Chouksey and Karfa 2020; Chouksey et al.

2019; Karfa et al. 2006; Youngsik Kim et al. 2004]. Nevertheless, it is an expensive task, especially

for large designs, and it must be repeated every time the compiler is invoked. For example, the

translation validation for Catapult C [Mentor 2020] may require several rounds of expert ‘adjust-

ments’ [Chauhan 2020, p. 3] to the input C program before validation succeeds. And even when it

succeeds, translation validation does not provide watertight guarantees unless the validator itself

has been mechanically proven correct [e.g. Tristan and Leroy 2008], which has not been the case in

HLS tools to date.

Our position is that none of the above workarounds are necessary if the HLS tool can simply be

trusted to work correctly.

Our solution. We have designed a new HLS tool in the Coq theorem prover and proved that any

output design it produces always has the same behaviour as its input program. Our tool, called

Vericert, is automatically extracted to an OCaml program from Coq, which ensures that the object of

the proof is the same as the implementation of the tool. Vericert is built by extending the CompCert

verified C compiler [Leroy 2009] with a new hardware-specific intermediate language and a Verilog

back end. It supports most C constructs, including integer operations, function calls (which are all

inlined), local arrays, structs, unions, and general control-flow statements, but currently excludes

support for case statements, function pointers, recursive function calls, non-32-bit integers, floats,

and global variables.

Contributions and Outline. The contributions of this paper are as follows:
• We present Vericert, the first mechanically verified HLS tool that compiles C to Verilog.

In Section 2, we describe the design of Vericert, including certain optimisations related to

memory accesses and division.

• We state the correctness theorem of Vericert with respect to an existing semantics for Verilog

due to Lööw and Myreen [2019]. In Section 3, we describe how we extended this semantics to

1
https://bit.ly/vivado-hls-pipeline-bug

2
https://bit.ly/vivado-hls-pointer-bug
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make it suitable as an HLS target. We also describe how the Verilog semantics is integrated

into CompCert’s language execution model and its framework for performing simulation

proofs. A mapping of CompCert’s infinite memory model onto a finite Verilog array is also

described.

• In Section 4, we describe how we proved the correctness theorem. The proof follows standard

CompCert techniques – forward simulations, intermediate specifications, and determinism

results – but we encountered several challenges peculiar to our hardware-oriented setting.

These include handling discrepancies between the byte-addressed memory assumed by the

input software and the word-addressed memory that we implement in the output hard-

ware, different handling of unsigned comparisons between C and Verilog, and carefully

implementing memory reads and writes so that these behave properly as a RAM in hardware.

• In Section 5, we evaluate Vericert on the PolyBench/C benchmark suite [Pouchet 2020], and

compare the performance of our generated hardware against an existing, unverified HLS tool

called LegUp [Canis et al. 2011]. We show that Vericert generates hardware that is 27× slower

(2× slower in the absence of division) and 1.1× larger than that generated by LegUp. This

performance gap can be largely attributed to Vericert’s current lack of support for instruction-

level parallelism and the absence of an efficient, pipelined division operator. We intend to

close this gap in the future by introducing (and verifying) HLS optimisations of our own, such

as scheduling and memory analysis. This section also reports on our campaign to fuzz-test

Vericert using over a hundred thousand random C programs generated by Csmith [Yang et al.

2011] in order to confirm that its correctness theorem is watertight.

Companion material. Vericert is fully open source and available on GitHub at https://github.

com/ymherklotz/vericert. A snapshot of the Vericert development is also available in a Zenodo

repository [Herklotz et al. 2021b].

2 DESIGNING A VERIFIED HLS TOOL
This section describes the main architecture of the HLS tool, and the way in which the Verilog

back end was added to CompCert. This section also covers an example of converting a simple C

program into hardware, expressed in the Verilog language.

2.1 Main Design Decisions
Choice of source language. C was chosen as the source language as it remains the most common

source language amongst production-quality HLS tools [Canis et al. 2011; Intel 2020a; Pilato and

Ferrandi 2013; Xilinx 2020]. This, in turn, may be because it is “[t]he starting point for the vast

majority of algorithms to be implemented in hardware” [Gajski et al. 2010], lending a degree of

practicality. The availability of CompCert [Leroy 2009] also provides a solid basis for formally

verified C compilation. We considered Bluespec [Nikhil 2004], but decided that although it “can

be classed as a high-level language” [Greaves 2019], it is too hardware-oriented to be suitable for

traditional HLS. We also considered using a language with built-in parallel constructs that map

well to parallel hardware, such as occam [Page and Luk 1991], Spatial [Koeplinger et al. 2018] or

Scala [Bachrach et al. 2012].

Choice of target language. Verilog [IEEE Std 1364 2006] is an HDL that can be synthesised into

logic cells which can either be placed onto a field-programmable gate array (FPGA) or turned into

an application-specific integrated circuit (ASIC). Verilog was chosen as the output language for

Vericert because it is one of the most popular HDLs and there already exist a few formal semantics

for it that could be used as a target [Lööw et al. 2019; Meredith et al. 2010]. Bluespec, previously
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Clight · · · CminorSel 3AC LTL aarch64

x86

· · ·

· · ·

HTL Verilog

CompCert

Vericert
RAM

insertion

Fig. 1. Vericert as a Verilog back end to CompCert.

ruled out as a source language, is another possible target and there exists a formally verified

translation to circuits using Kôika [Bourgeat et al. 2020].

Choice of implementation language. We chose Coq as the implementation language because of its

mature support for code extraction; that is, its ability to generate OCaml programs directly from

the definitions used in the theorems. We note that other authors have had some success reasoning

about the HLS process using other theorem provers such as Isabelle [Ellis 2008]. CompCert [Leroy

2009] was chosen as the front end because it has a well established framework for simulation proofs

about intermediate languages, and it already provides a validated C parser [Jourdan et al. 2012]. The

Vellvm framework [Zhao et al. 2012] was also considered because several existing HLS tools are

already LLVM-based, but additional work would be required to support a high-level language like C

as input. The .NET framework has been used as a basis for other HLS tools, such as Kiwi [Greaves

and Singh 2008], and LLHD [Schuiki et al. 2020] has been recently proposed as an intermediate

language for hardware design, but neither are suitable for us because they lack formal semantics.

Architecture of Vericert. The main work flow of Vericert is given in Fig. 1, which shows those

parts of the translation that are performed in CompCert, and those that have been added. This

includes translations to two new intermediate languages added in Vericert, HTL and Verilog, as

well as an additional optimisation pass labelled as “RAM insertion”.

CompCert translates Clight
3
input into assembly output via a sequence of intermediate languages;

we must decide which of these ten languages is the most suitable starting point for the HLS-specific

translation stages.

We select CompCert’s three-address code (3AC)
4
as the starting point. Branching off before this

point (at CminorSel or earlier) denies CompCert the opportunity to perform optimisations such

as constant propagation and dead-code elimination, which, despite being designed for software

compilers, have been found useful in HLS tools as well [Cong et al. 2011]. And if we branch off

after this point (at LTL or later) then CompCert has already performed register allocation to reduce

the number of registers and spill some variables to the stack; this transformation is not required in

HLS because there are many more registers available, and these should be used instead of RAM

whenever possible.

3AC is also attractive because it is the closest intermediate language to LLVM IR, which is used by

several existing HLS compilers. It has an unlimited number of pseudo-registers, and is represented

3
A deterministic subset of C with pure expressions.

4
This is known as register transfer language (RTL) in the CompCert literature. ‘3AC’ is used in this paper instead to avoid

confusion with register-transfer level (RTL), which is another name for the final hardware target of the HLS tool.
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1 module main(input rst, input y, input clk,
2 output reg z);
3 reg tmp, state;
4 always @(posedge clk)
5 case (state)
6 1'b0: tmp <= y;
7 1'b1: begin tmp <= 1'b0; z <= tmp; end
8 endcase
9 always @(posedge clk)
10 if (rst) state <= 1'b0;
11 else case (state)
12 1'b0: if (y) state <= 1'b1;
13 else state <= 1'b0;
14 1'b1: state <= 1'b0;
15 endcase
16 endmodule

𝑆start/x

𝑆1/1

𝑆0/1

00 1x

01

xx
01

Fig. 2. A simple state machine implemented in Verilog, with its diagrammatic representation on the right.
The x stands for “don’t care” and each transition is labelled with the values of the inputs rst and y that
trigger the transition. The output that will be produced is shown in each state.

as a control flow graph (CFG) where each instruction is a node with links to the instructions that

can follow it. One difference between LLVM IR and 3AC is that 3AC includes operations that

are specific to the chosen target architecture; we chose to target the x86_32 back end because it

generally produces relatively dense 3AC thanks to the availability of complex addressing modes.

2.2 An Introduction to Verilog
This section will introduce Verilog for readers who may not be familiar with the language, concen-

trating on the features that are used in the output of Vericert. Verilog is a hardware description

language (HDL) and is used to design hardware ranging from complete CPUs that are eventually

produced as integrated circuits, to small application-specific accelerators that are placed on FPGAs.

Verilog is a popular language because it allows for fine-grained control over the hardware, and also

provides high-level constructs to simplify development.

Verilog behaves quite differently to standard software programming languages due to it having

to express the parallel nature of hardware. The basic construct to achieve this is the always-block,

which is a collection of assignments that are executed every time some event occurs. In the case of

Vericert, this event is either a positive (rising) or a negative (falling) clock edge. All always-blocks

triggering on the same event are executed in parallel. Always-blocks can also express control-flow

using if-statements and case-statements.

A simple state machine can be implemented as shown in Fig. 2. At every positive edge of the

clock (clk), both of the always-blocks will trigger simultaneously. The first always-block controls

the values in the register tmp and the output z, while the second always-block controls the next

state the state machine should go to. When the state is 0, tmp will be assigned to the input y using
nonblocking assignment, denoted by <=. Nonblocking assignment assigns registers in parallel at

the end of the clock cycle, rather than sequentially throughout the always-block. In the second

always-block, the input ywill be checked, and if it’s high it will move on to the next state, otherwise

it will stay in the current state. When state is 1, the first always-block will reset the value of tmp
and then set z to the original value of tmp, since nonblocking assignment does not change its value

until the end of the clock cycle. Finally, the last always-block will set the state to 0 again.
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1 int main() {
2 int x[2] = {3, 6};
3 int i = 1;
4 return x[i];
5 }

(a) Example C code passed to
Vericert.

1 main() {
2 x5 = 3
3 int32[stack(0)] = x5
4 x4 = 6
5 int32[stack(4)] = x4
6 x1 = 1
7 x3 = stack(0) (int)
8 x2 = int32[x3 + x1
9 * 4 + 0]
10 return x2
11 }

(b) 3AC produced by the Comp-
Cert front-end without any opti-
misations.

1 module main(reset, clk, finish, return_val);
2 input [0:0] reset, clk;
3 output reg [0:0] finish = 0;
4 output reg [31:0] return_val = 0;
5 reg [31:0] reg_3 = 0, addr = 0, d_in = 0, reg_5 = 0, wr_en = 0;
6 reg [0:0] en = 0, u_en = 0;
7 reg [31:0] state = 0, reg_2 = 0, reg_4 = 0, d_out = 0, reg_1 = 0;
8 reg [31:0] stack [1:0];
9 // RAM interface
10 always @(negedge clk)
11 if ({u_en != en}) begin
12 if (wr_en) stack[addr] <= d_in;
13 else d_out <= stack[addr];
14 en <= u_en;
15 end
16 // Data-path
17 always @(posedge clk)
18 case (state)
19 32'd11: reg_2 <= d_out;
20 32'd8: reg_5 <= 32'd3;
21 32'd7: begin u_en <= ( ~ u_en); wr_en <= 32'd1;
22 d_in <= reg_5; addr <= 32'd0; end
23 32'd6: reg_4 <= 32'd6;
24 32'd5: begin u_en <= ( ~ u_en); wr_en <= 32'd1;
25 d_in <= reg_4; addr <= 32'd1; end
26 32'd4: reg_1 <= 32'd1;
27 32'd3: reg_3 <= 32'd0;
28 32'd2: begin u_en <= ( ~ u_en); wr_en <= 32'd0;
29 addr <= {{{reg_3 + 32'd0} + {reg_1 * 32'd4}} / 32'd4}; end
30 32'd1: begin finish = 32'd1; return_val = reg_2; end
31 default: ;
32 endcase
33 // Control logic
34 always @(posedge clk)
35 if ({reset == 32'd1}) state <= 32'd8;
36 else case (state)
37 32'd11: state <= 32'd1; 32'd4: state <= 32'd3;
38 32'd8: state <= 32'd7; 32'd3: state <= 32'd2;
39 32'd7: state <= 32'd6; 32'd2: state <= 32'd11;
40 32'd6: state <= 32'd5; 32'd1: ;
41 32'd5: state <= 32'd4; default: ;
42 endcase
43 endmodule

(c) Verilog produced by Vericert. It demonstrates the instantiation of
the RAM (lines 9–15), the data-path (lines 16–32) and the control logic
(lines 33–42).

Fig. 3. Translating a simple program from C to Verilog.

2.3 Translating C to Verilog by Example
Fig. 3 illustrates the translation of a simple program that stores and retrieves values from an array.

In this section, we describe the stages of the Vericert translation, referring to this program as an

example.

2.3.1 Translating C to 3AC. The first stage of the translation uses unmodified CompCert to trans-

form the C input, shown in Fig. 3a, into a 3AC intermediate representation, shown in Fig. 3b. As

part of this translation, function inlining is performed on all functions, which allows us to support

function calls without having to support the Icall 3AC instruction. Although the duplication of

the function bodies caused by inlining can increase the area of the hardware, it can have a positive

effect on latency and is therefore a common HLS optimisation [Noronha et al. 2017]. Inlining

precludes support for recursive function calls, but this feature is not supported in most HLS tools

anyway [Thomas 2016].

2.3.2 Translating 3AC to HTL. The next translation is from 3AC to a new hardware translation

language (HTL). This involves going from a CFG representation of the computation to a finite state

machine with data-path (FSMD) representation [Hwang et al. 1999]. The core idea of the FSMD

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 117. Publication date: October 2021.
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Data-path Control Logic

Next State FSM

8 7 6 5 4 3 2 1

11

Current State
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u_en

wr_en

addr

d_in

d_out

0

1

Registers

reg_1

reg_2

reg_3

reg_4
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Fig. 4. The FSMD for the example shown in Fig. 3, split into a data-path and control logic for the next state
calculation. The Update block takes the current state, current values of all registers and at most one value
stored in the RAM, and calculates a new value that can either be stored back in the RAM or in a register.

representation is that it separates the control flow from the operations on the memory and registers.

Hence, an HTL program consists of two maps from states to Verilog statements: the control logic
map, which expresses state transitions, and the data-pathmap, which expresses computations. Fig. 4

shows the resulting FSMD architecture. The right-hand block is the control logic that computes

the next state, while the left-hand block updates all the registers and RAM based on the current

program state.

The HTL language was mainly introduced to simplify the proof of translation from 3AC to

Verilog, as these languages have very different semantics. It serves as an intermediate language

with similar semantics to 3AC at the top level, using maps to represents what to execute at every

state, and similar semantics to Verilog at the lower level by already using Verilog statements instead

of more abstract instructions. Compared to plain Verilog, HTL is simpler to manipulate and analyse,

thereby making it easier to prove optimisations like proper RAM insertion.

Translating memory. Typically, HLS-generated hardware consists of a sea of registers and RAMs.

This memory view is very different from the C memory model, so we perform the following

translation from CompCert’s abstract memory model to a concrete RAM. Variables that do not have

their address taken are kept in registers, which correspond to the registers in 3AC. All address-taken

variables, arrays, and structs are kept in RAM. The stack of the main function becomes an unpacked

array of 32-bit integers representing the RAM block. Any loads and stores are temporarily translated

to direct accesses to this array, where each address has its offset removed and is divided by four.

In a separate HTL-to-HTL conversion, these direct accesses are then translated to proper loads

and stores that use a RAM interface to communicate with the RAM, shown on lines 21, 24 and 28

of Fig. 3c. This pass inserts a RAM block with the interface around the unpacked array. Without

this interface and without the RAM block, the synthesis tool processing the Verilog hardware

description would not identify the array as a RAM, and would instead implement it using many

registers. This interface is shown on lines 9–15 in the Verilog code in Fig. 3c. A high-level overview

of the architecture and of the RAM interface can be seen in Fig. 4.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 117. Publication date: October 2021.
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Translating instructions. Most 3AC instructions correspond to hardware constructs. For example,

line 2 in Fig. 3b shows a 32-bit register x5 being initialised to 3, after which the control flow moves

execution to line 3. This initialisation is also encoded in the Verilog generated from HTL at state 8 in

both the control logic and data-path always-blocks, shown at lines 33 and 16 respectively in Fig. 3c.

Simple operator instructions are translated in a similar way. For example, the add instruction is just

translated to the built-in add operator, similarly for the multiply operator. All 32-bit instructions

can be translated in this way, but some special instructions require extra care. One such instruction

is the Oshrximm instruction, which is discussed further in Section 2.4.3. Another is the Oshldimm
instruction, which is a left rotate instruction that has no Verilog equivalent and therefore has to be

implemented in terms of other operations and proven to be equivalent. The only 32-bit instructions

that we do not translate are case-statements (Ijumptable) and those instructions related to function
calls (Icall, Ibuiltin, and Itailcall), because we enable inlining by default.

2.3.3 Translating HTL to Verilog. Finally, we have to translate the HTL code into proper Verilog.

The challenge here is to translate our FSMD representation into a Verilog AST. However, as all

the instructions in HTL are already expressed as Verilog statements, only the top-level data-path

and control logic maps need to be translated to valid Verilog case-statements. We also require

declarations for all the variables in the program, as well as declarations of the inputs and outputs

to the module, so that the module can be used inside a larger hardware design. In addition to

translating the maps of Verilog statements, an always-block that will behave like the RAM also has

to be created, which is only modelled abstractly at the HTL level. Fig. 3c shows the final Verilog

output that is generated for our example.

Although this translation seems quite straightforward, proving that this translation is correct is

complex. All the implicit assumptions that were made in HTL need to be translated explicitly to

Verilog statements and it needs to be shown that these explicit behaviours are equivalent to the

assumptions made in the HTL semantics. One main example of this is proving that the specification

of the RAM in HTL does indeed behave in the same as its Verilog implementation. We discuss these

proofs in upcoming sections.

2.4 Optimisations
Although we would not claim that Vericert is a proper ‘optimising’ HLS compiler yet, we have

nonetheless made several design choices that aim to improve the quality of the hardware designs it

produces.

2.4.1 Byte- and Word-Addressable Memories. One big difference between C and Verilog is how

memory is represented. Although Verilog arrays use similar syntax to C arrays, they must be

treated quite differently. To make loads and stores as efficient as possible, the RAM needs to be

word-addressable, which means that an entire integer can be loaded or stored in one clock cycle.

However, the memory model that CompCert uses for its intermediate languages is byte-addressa-

ble [Blazy and Leroy 2005]. If a byte-addressable memory was used in the target hardware, which

is closer to CompCert’s memory model, then a load and store would instead take four clock cycles,

because a RAM can only perform one read and write per clock cycle. It therefore has to be proven

that the byte-addressable memory behaves in the same way as the word-addressable memory in

hardware. Any modifications of the bytes in the CompCert memory model also have to be shown

to modify the word-addressable memory in the same way. Since only integer loads and stores are

currently supported in Vericert, it follows that the addresses given to the loads and stores will be

multiples of four. Translating from byte-addressed memory to word-addressed memory can then

be done by dividing the address by four.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 117. Publication date: October 2021.
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2.4.2 Implementation of RAM Interface. The simplest way to implement loads and stores in Vericert

would be to access the Verilog array directly from within the data-path (i.e., inside the always-block

on lines 16–32 of Fig. 3c). This would be correct, but when a Verilog array is accessed at several

program points, the synthesis tool is unlikely to detect that it can be implemented as a RAM block,

and will resort to using lots of registers instead, ruining the circuit’s area and performance. To avert

this, we arrange that the data-path does not access memory directly, but simply sets the address it

wishes to access and then toggles the u_en flag. This activates the RAM interface (lines 9–15 of

Fig. 3c) on the next falling clock edge, which performs the requested load or store. By factoring

all the memory accesses out into a separate interface, we ensure that the underlying array is only

accessed from a single program point in the Verilog code, and thus ensure that the synthesis tool

will correctly infer a RAM block.
5

Therefore, an extra compiler pass is added from HTL to HTL to extract all the direct accesses to

the Verilog array and replace them by signals that access the RAM interface in a separate always-

block. The translation is performed by going through all the instructions and replacing each load

and store expression in turn. Stores can simply be replaced by the necessary wires directly. Loads

are a little more subtle: loads that use the RAM interface take two clock cycles where a direct load

from an array takes only one, so this pass inserts an extra state after each load.

There are two interesting parts to the inserted RAM interface. Firstly, the memory updates are

triggered on the negative (falling) edge of the clock, out of phase with the rest of the design which

is triggered on the positive (rising) edge of the clock. The advantage of this is that instead of loads

and stores taking three clock cycles and two clock cycles respectively, they only take two clock

cycles and one clock cycle instead, greatly improving their performance. Using the negative edge

of the clock is widely supported by synthesis tools, and does not affect the maximum frequency of

the final design.

Secondly, the logic in the enable signal of the RAM (en != u_en) is also atypical in hardware

designs. Enable signals are normally manually controlled and inserted into the appropriate states,

by using a check like the following in the RAM: en == 1. This means that the RAM only turns

on when the enable signal is set. However, to make the proof simpler and avoid reasoning about

possible side effects introduced by the RAM being enabled but not used, a RAM which disables

itself after every use would be ideal. One method for implementing this would be to insert an extra

state after each load or store that disables the RAM, but this extra state would eliminate the speed

advantage of the negative-edge-triggered RAM. Another method would be to determine the next

state after each load or store and disable the RAM in that state, but this could quickly become

complicated, especially in the case where the next state also contains a memory operation, and

hence the disable signal should not be added. The method we ultimately chose was to have the

RAM become enabled not when the enable signal is high, but when it toggles its value. This can
be arranged by keeping track of the old value of the enable signal in en and comparing it to the

current value u_en set by the data-path. When the values are different, the RAM gets enabled, and

then en is set to the value of u_en. This ensures that the RAM will always be disabled straight after

it was used, without having to insert or modify any other states.

Fig. 5 gives an example of how the RAM interface behaves when values are loaded and stored.

2.4.3 Implementing the Oshrximm Instruction. Many of the CompCert instructions map well to

hardware, but Oshrximm (efficient signed division by a power of two using a logical shift) is

expensive if implemented naïvely. The problem is that in CompCert it is specified as a signed

5
Interestingly, the Verilog code shown for the RAM interface must not be modified, because the synthesis tool will only

generate a RAM when the code matches a small set of specific patterns.
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clk

u_en u_en u_en

addr 3

wr_en

en u_en u_en

d_out 0xDEADBEEF

r 0xDEADBEEF

1 2 3

(a) Timing diagram for loads. At time 1, the u_en
signal is toggled to enable the RAM. At time 2, d_out
is set to the value stored at the address in the RAM,
which is finally assigned to the register r at time 3.

clk

u_en u_en u_en

addr 3

wr_en

d_in 0xDEADBEEF

en u_en u_en

stack[addr] 0xDEADBEEF

1 2

(b) Timing diagram for stores. At time 1, the u_en
signal is toggled to enable the RAM, and the address
addr and the data to store d_in are set. On the neg-
ative edge at time 2, the data is stored into the RAM.

Fig. 5. Timing diagrams showing the execution of loads and stores over multiple clock cycles.

division:

Oshrximm 𝑥 𝑦 = round_towards_zero

( 𝑥
2
𝑦

)
(where 𝑥,𝑦 ∈ Z, 0 ≤ 𝑦 < 31, and −231 ≤ 𝑥 < 2

31
) and instantiating divider circuits in hardware is

well known to cripple performance. Moreover, since Vericert requires the result of a divide operation

to be ready within a single clock cycle, the divide circuit needs to be entirely combinational. This

is inefficient in terms of area, but also in terms of latency, because it means that the maximum

frequency of the hardware must be reduced dramatically so that the divide circuit has enough time

to finish. It should therefore be implemented using a sequence of shifts.

CompCert eventually performs a translation from this representation into assembly code which

uses shifts to implement the division, however, the specification of the instruction in 3AC itself still

uses division instead of shifts, meaning this proof of the translation cannot be reused. In Vericert,

the equivalence of the representation in terms of divisions and shifts is proven over the integers and

the specification, thereby making it simpler to prove the correctness of the Verilog implementation

in terms of shifts.

3 A FORMAL SEMANTICS FOR VERILOG
This section describes the Verilog semantics that was chosen for the target language, including the

changes that were made to the semantics to make it a suitable HLS target. The Verilog standard

is quite large [IEEE Std 1364 2006; IEEE Std 1364.1 2005], but the syntax and semantics can be

reduced to a small subset that Vericert needs to target. This section also describes how Vericert’s

representation of memory differs from CompCert’s memory model.

The Verilog semantics we use is ported to Coq from a semantics written in HOL4 by Lööw and

Myreen [2019] and used to prove the translation from HOL4 to Verilog [Lööw et al. 2019]. This

semantics is quite practical as it is restricted to a small subset of Verilog, which can nonetheless be

used to model the hardware constructs required for HLS. The main features that are excluded are

continuous assignment and combinational always-blocks; these are modelled in other semantics

such as that by Meredith et al. [2010].

The semantics of Verilog differs from regular programming languages, as it is used to describe

hardware directly, which is inherently parallel, rather than an algorithm, which is usually sequential.

The main construct in Verilog is the always-block. A module can contain multiple always-blocks,

all of which run in parallel. These always-blocks further contain statements such as if-statements
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or assignments to variables. We support only synchronous logic, which means that the always-block

is triggered on (and only on) the positive or negative edge of a clock signal.

The semantics combines the big-step and small-step styles. The overall execution of the hardware

is described using a small-step semantics, with one small step per clock cycle; this is appropriate

because hardware is routinely designed to run for an unlimited number of clock cycles and the

big-step style is ill-suited to describing infinite executions. Then, within each clock cycle, a big-step

semantics is used to execute all the statements. An example of a rule for executing an always-block

that is triggered at the positive edge of the clock is shown below, where Σ is the state of the registers

in the module and 𝑠 is the statement inside the always-block:

Always

(Σ, 𝑠) ↓stmnt Σ
′

(Σ, always @(posedge clk) 𝑠) ↓
always

+ Σ′

This rule says that assuming the statement 𝑠 in the always-block runs with state Σ and produces

the new state Σ′
, the always-block will result in the same final state.

Two types of assignments are supported in always-blocks: nonblocking and blocking assignment.

Nonblocking assignments all take effect simultaneously at the end of the clock cycle, while blocking

assignments happen instantly so that later assignments in the clock cycle can pick them up. To

model both of these assignments, the state Σ has to be split into two maps: Γ, which contains the

current values of all variables and arrays, and Δ, which contains the values that will be assigned

at the end of the clock cycle. Σ can therefore be defined as follows: Σ = (Γ,Δ). Nonblocking
assignment can therefore be expressed as follows:

Nonblocking Reg

name 𝑑 = OK 𝑛 (Γ, 𝑒) ↓expr 𝑣
((Γ,Δ), 𝑑 <= 𝑒) ↓stmnt (Γ,Δ[𝑛 ↦→ 𝑣])

where assuming that ↓expr evaluates an expression 𝑒 to a value 𝑣 , the nonblocking assignment

𝑑 <= 𝑒 updates the future state of the variable 𝑑 with value 𝑣 .

Finally, the following rule dictates how the whole module runs in one clock cycle:

Module

(Γ, 𝜖, ®𝑚) ↓module (Γ′,Δ′)
(Γ, module main(...); ®𝑚 endmodule) ↓program (Γ′ // Δ′)

where Γ is the initial state of all the variables, 𝜖 is the empty map because the Δ map is assumed to

be empty at the start of the clock cycle, and ®𝑚 is a list of variable declarations and always-blocks

that ↓module evaluates sequentially to obtain (Γ′,Δ′). The final state is obtained by merging these

maps using the // operator, which gives priority to the right-hand operand in a conflict. This rule

ensures that the nonblocking assignments overwrite at the end of the clock cycle any blocking

assignments made during the cycle.

3.1 Changes to the Semantics
Five changes were made to the semantics proposed by Lööw and Myreen [2019] to make it suitable

as an HLS target.

Adding array support. The main change is the addition of support for arrays, which are needed

to model RAM in Verilog. RAM is needed to model the stack in C efficiently, without having to

declare a variable for each possible stack location. Consider the following Verilog code:

1 reg [31:0] x[1:0];
2 always @(posedge clk) begin x[0] = 1; x[1] <= 1; end
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which modifies one array element using blocking assignment and then a second using non-

blocking assignment. If the existing semantics were used to update the array, then during the

merge, the entire array x from the nonblocking association map would replace the entire array

from the blocking association map. This would replace x[0] with its original value and therefore

behave incorrectly. Accordingly, we modified the maps so they record updates on a per-element

basis. Our state Γ is therefore further split up into Γ𝑟 for instantaneous updates to variables, and

Γ𝑎 for instantaneous updates to arrays (Γ = (Γ𝑟 , Γ𝑎)); Δ is split similarly (Δ = (Δ𝑟 ,Δ𝑎)). The merge

function then ensures that only the modified indices get updated when Γ𝑎 is merged with the

nonblocking map equivalent Δ𝑎 .

Adding negative edge support. To reason about circuits that execute on the negative edge of the

clock (such as our RAM interface described in Section 2.4.2), support for negative-edge-triggered

always-blocks was added to the semantics. This is shown in the modifications of the Module rule

shown below:

Module

(Γ, 𝜖, ®𝑚) ↓
module

+ (Γ′,Δ′) (Γ′ // Δ′, 𝜖, ®𝑚) ↓module
− (Γ′′,Δ′′)

(Γ, module main(...); ®𝑚 endmodule) ↓program (Γ′′ // Δ′′)
The main execution of the module ↓module is split into ↓module

+ and ↓module
− , which are rules that

only execute always-blocks triggered at the positive and at the negative edge respectively. The

positive-edge-triggered always-blocks are processed in the same way as in the originalModule

rule. The output maps Γ′ and Δ′
are then merged and passed as the blocking assignments map

into the negative edge execution, so that all the blocking and nonblocking assignments are present.

Finally, all the negative-edge-triggered always-blocks are processed and merged to give the final

state.

Adding declarations. Explicit support for declaring inputs, outputs and internal variables was

added to the semantics to make sure that the generated Verilog also contains the correct declarations.

This adds some guarantees to the generated Verilog and ensures that it synthesises and simulates

correctly.

Removing support for external inputs to modules. Support for receiving external inputs was

removed from the semantics for simplicity, as these are not needed for an HLS target. The main

module in Verilog models the main function in C, and since the inputs to a C function should not

change during its execution, there is no need for external inputs for Verilog modules.

Simplifying representation of bitvectors. Finally, we use 32-bit integers to represent bitvectors

rather than arrays of booleans. This is because Vericert (currently) only supports types represented

by 32 bits.

3.2 Integrating the Verilog Semantics into CompCert’s Model
The CompCert computation model defines a set of states through which execution passes. In this

subsection, we explain how we extend our Verilog semantics with four special-purpose registers in

order to integrate it into CompCert.

CompCert executions pass through three main states:

State sf 𝑚 𝑣 Γ𝑟 Γ𝑎 The main state when executing a function, with stack frame sf , current
module𝑚, current state 𝑣 and variable states Γ𝑟 and Γ𝑎 .

Callstate sf 𝑚 ®𝑟 The state that is reached when a function is called, with the current stack

frame sf , current module𝑚 and arguments ®𝑟 .
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Step

Γ𝑟 [rst] = 0 Γ𝑟 [fin] = 0 (𝑚, (Γ𝑟 , Γ𝑎)) ↓program (Γ′𝑟 , Γ′𝑎)
State sf 𝑚 Γ𝑟 [𝜎] Γ𝑟 Γ𝑎 −→ State sf 𝑚 Γ′𝑟 [𝜎] Γ′𝑟 Γ′𝑎

Finish

Γ𝑟 [fin] = 1

State sf 𝑚 𝜎 Γ𝑟 Γ𝑎 −→ Returnstate sf Γ𝑟 [ret]
Call

Callstate sf 𝑚 ®𝑟 −→ State sf 𝑚 𝑛 ((init_params ®𝑟 𝑎) [𝜎 ↦→ 𝑛, fin ↦→ 0, rst ↦→ 0]) 𝜖
Return

Returnstate (Stackframe 𝑟 𝑚 pc Γ𝑟 Γ𝑎 :: sf ) 𝑣 −→ State sf 𝑚 pc (Γ𝑟 [𝜎 ↦→ pc, 𝑟 ↦→ 𝑣]) Γ𝑎

Fig. 6. Top-level small-step semantics for Verilog modules in CompCert’s computational framework.

Returnstate sf 𝑣 The state that is reached when a function returns back to the caller, with

stack frame sf and return value 𝑣 .

To support this computational model, we extend the Verilog module we generate with the

following four registers and a RAM block:

program counter The program counter can be modelled using a register that keeps track of

the state, denoted as 𝜎 .

function entry point When a function is called, the entry point denotes the first instruction

that will be executed. This can be modelled using a reset signal that sets the state accordingly,

denoted as rst.
return value The return value can be modelled by setting a finished flag to 1 when the result

is ready, and putting the result into a 32-bit output register. These are denoted as fin and ret
respectively.

stack The function stack can be modelled as a RAM block, which is implemented using an

array in the module, and denoted as stk.
Fig. 6 shows the inference rules for moving between the computational states. The first, Step, is

the normal rule of execution. It defines one step in the State state, assuming that the module is

not being reset, that the finish state has not been reached yet, that the current and next state are 𝑣

and 𝑣 ′, and that the module runs from state Γ to Γ′ using the Step rule. The Finish rule returns the

final value of running the module and is applied when the fin register is set; the return value is

then taken from the ret register.
Note that there is no step from State to Callstate; this is because function calls are not

supported, and it is therefore impossible in our semantics ever to reach a Callstate except for

the initial call to main. So the Call rule is only used at the very beginning of execution; likewise,

the Return rule is only matched for the final return value from the main function. Therefore, in

addition to the rules shown in Fig. 6, an initial state and final state need to be defined:

Initial

is_internal 𝑃 .main

initial_state (Callstate [] 𝑃 .main [])

Final

final_state (Returnstate [] 𝑛) 𝑛
where the initial state is the Callstate with an empty stack frame and no arguments for the main
function of program 𝑃 , where this main function needs to be in the current translation unit. The
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CompCert’s Memory Model Verilog Memory Representation

0

1

··
·

0

1

2

3

4

5

6

DE
AD
BE
EF
12
34
56

· · ·

· · ·

⇒

x[0] = 0xDEADBEEF;

0: Some 00000000
1: Some 12345600
2: Some 00000000
3: Some 00000000
4: Some 00000000
5: Some 00000000
6: Some 00000000

· · ·
N: Some 00000000

0: Some DEADBEEF
1: None
2: None
3: None
4: None
5: None
6: None

· · ·
N: None

Γ𝑎 Δ𝑎

stack[0] <= 0xDEADBEEF;

Fig. 7. Change in the memory model during the translation of 3AC into HTL. The state of the memories in
each case is right after the execution of the store to memory.

final state results in the program output of value 𝑛 when reaching a Returnstate with an empty

stack frame.

3.3 Memory Model
The Verilog semantics do not define a memory model for Verilog, as this is not needed for a

hardware description language. There is no preexisting architecture that Verilog will produce; it

can describe any memory layout that is needed. Instead of having specific semantics for memory,

the semantics only needs to support the language features that can produce these different memory

layouts, these being Verilog arrays. We therefore define semantics for updating Verilog arrays

using blocking and nonblocking assignment. We then have to prove that the C memory model

that CompCert uses matches with the interpretation of arrays used in Verilog. The CompCert

memory model is infinite, whereas our representation of arrays in Verilog is inherently finite. There

have already been efforts to define a general finite memory model for all intermediate languages

in CompCert, such as CompCertS [Besson et al. 2018] or CompCert-TSO [Ševčík et al. 2013], or

keeping the intermediate languages intact and translate to a more concrete finite memory model in

the back end, such as in CompCertELF [Wang et al. 2020]. We also define such a translation from

CompCert’s standard infinite memory model to finite arrays that can be represented in Verilog.

There is therefore no more notion of an abstract memory model and all the interactions to memory

are encoded in the hardware itself.

This translation is represented in Fig. 7. CompCert defines a map from blocks to maps from

memory addresses to memory contents. Each block represents an area in memory; for example, a

block can represent a global variable or a stack for a function. As there are no global variables, the

main stack can be assumed to be block 0, and this is the only block we translate. Meanwhile, our

Verilog semantics defines two finite arrays of optional values, one for the blocking assignments

map Γa and one for the nonblocking assignments map Δa. The optional values are present to ensure

correct merging of the two association maps at the end of the clock cycle. The invariant used in

the proofs is that block 0 should be equivalent to the merged representation of the Γa and Δa maps.

4 CORRECTNESS PROOF
Now that the Verilog semantics have been adapted to the CompCert model, we are in a position to

formally prove the correctness of our C-to-Verilog compilation. This section describes the main
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correctness theorem that was proven and the key ideas in the proof. The full Coq proof is available

online [Herklotz et al. 2021b].

4.1 Main Challenges in the Proof
The proof of correctness of the Verilog back end is quite different from the usual proofs performed

in CompCert, mainly because of the difference in the memory model and semantic differences

between Verilog and CompCert’s existing intermediate languages.

• As already mentioned in Section 3.3, because the memory model in our Verilog semantics

is finite and concrete, but the CompCert memory model is more abstract and infinite with

additional bounds, the equivalence of these models needs to be proven. Moreover, our memory

is word-addressed for efficiency reasons, whereas CompCert’s memory is byte-addressed.

• Second, the Verilog semantics operates quite differently to the usual intermediate languages

in CompCert. All the CompCert intermediate languages use a map from control-flow nodes

to instructions. An instruction can therefore be selected using an abstract program pointer.

Meanwhile, in the Verilog semantics the whole design is executed at every clock cycle, because

hardware is inherently parallel. The program pointer is part of the design as well, not just

part of an abstract state. This makes the semantics of Verilog simpler, but comparing it to the

semantics of 3AC becomes more challenging, as one has to map the abstract notion of the

state to concrete values in registers.

Together, these differences mean that translating 3AC directly to Verilog is infeasible, as the

differences in the semantics are too large. Instead, HTL, which was introduced in Section 2, bridges

the gap in the semantics between the two languages. HTL still consists of maps, like many of the

other CompCert languages, but each state corresponds to a Verilog statement.

4.2 Formulating the Correctness Theorem
The main correctness theorem is analogous to that stated in CompCert [Leroy 2009]: for all Clight

source programs 𝐶 , if the translation to the target Verilog code succeeds, Safe(𝐶) holds and the

target Verilog has behaviour 𝐵 when simulated, then 𝐶 will have the same behaviour 𝐵. Safe(𝐶)
means all observable behaviours of 𝐶 are safe, which can be defined as ∀𝐵, 𝐶 ⇓ 𝐵 =⇒ 𝐵 ∈ Safe.
A behaviour is in Safe if it is either a final state (in the case of convergence) or divergent, but it

cannot ‘go wrong’. (This means that the source program must not contain undefined behaviour.) In

CompCert, a behaviour is also associated with a trace of I/O events, but since external function

calls are not supported in Vericert, this trace will always be empty.

Theorem 1. Whenever the translation from 𝐶 succeeds and produces Verilog 𝑉 , and all observable
behaviours of 𝐶 are safe, then 𝑉 has behaviour 𝐵 only if 𝐶 has behaviour 𝐵.

∀𝐶,𝑉 , 𝐵, HLS(𝐶) = OK(𝑉 ) ∧ Safe(𝐶) =⇒ (𝑉 ⇓ 𝐵 =⇒ 𝐶 ⇓ 𝐵).

Why is this correctness theorem also the right one for HLS? It could be argued that hardware

inherently runs forever and therefore does not produce a definitive final result. This would mean

that the CompCert correctness theorem would probably be unhelpful with proving hardware

correctness, as the behaviour would always be divergent. However, in practice, HLS does not

normally produce the top-level of the design that needs to connect to other components, therefore

needing to run forever. Rather, HLS often produces smaller components that take an input, execute,

and then terminate with an answer. To start the execution of the hardware and to signal to the

HLS component that the inputs are ready, the rst signal is set and unset. Then, once the result

is ready, the fin signal is set and the result value is placed in ret. These signals are also present

in the semantics of execution shown in Fig. 6. The correctness theorem therefore also uses these
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signals, and the proof shows that once the fin flag is set, the value in ret is correct according to

the semantics of Verilog and Clight. Note that the compiler is allowed to fail and not produce any

output; the correctness theorem only applies when the translation succeeds.

How can we prove this theorem? First, note that the theorem is a ‘backwards simulation’ result

(every target behaviour must also be a source behaviour), following the terminology used in the

CompCert literature [Leroy 2009]. The reverse direction (every source behaviour must also be a

target behaviour) is not demanded because compilers are permitted to resolve any non-determinism

present in their source programs. However, since Clight programs are all deterministic, as are the

Verilog programs in the fragment we consider, we can actually reformulate the correctness theorem

above as a forwards simulation result (following standard CompCert practice), which makes it

easier to prove. To prove this forward simulation, it suffices to prove forward simulations between

each pair of consecutive intermediate languages, as these results can be composed to prove the

correctness of the whole HLS tool. The forward simulation from 3AC to HTL is stated in Lemma 1

(Section 4.3), the forward simulation for the RAM insertion is shown in Lemma 4 (Section 4.4), then

the forward simulation between HTL and Verilog is shown in Lemma 5 (Section 4.5), and finally,

the proof that Verilog is deterministic is given in Lemma 6 (Section 4.6).

4.3 Forward Simulation from 3AC to HTL
As HTL is quite far removed from 3AC, this first translation is the most involved and therefore

requires a larger proof, because the translation from 3AC instructions to Verilog statements needs

to be proven correct in this step. In addition to that, the semantics of HTL are also quite different

to the 3AC semantics. Instead of defining small-step semantics for each construct in Verilog, the

semantics are defined over one clock cycle and mirror the semantics defined for Verilog. Lemma 1

shows the result that needs to be proven in this subsection.

Lemma 1 (Forward simulation from 3AC to HTL). Writing tr_htl for the translation from
3AC to HTL, we have:

∀𝑐, ℎ, 𝐵 ∈ Safe, tr_htl(𝑐) = OK(ℎ) ∧ 𝑐 ⇓ 𝐵 =⇒ ℎ ⇓ 𝐵.

Proof sketch. We prove this lemma by first establishing a specification of the translation

function tr_htl that captures its important properties, and then splitting the proof into two parts:

one to show that the translation function does indeed meet its specification, and one to show that

the specification implies the desired simulation result. This strategy is in keeping with standard

CompCert practice. □

4.3.1 From Implementation to Specification. The specification for the translation of 3AC instruc-

tions into HTL data-path and control logic can be defined by the following predicate:

spec_instr fin ret 𝜎 stk 𝑖 data control

Here, the control and data parameters are the statements that the current 3AC instruction 𝑖 should

translate to. The other parameters are the special registers defined in Section 3.2. An example of a

rule describing the translation of an arithmetic/logical operation from 3AC is the following:

Iop

tr_op op ®𝑎 = OK 𝑒

spec_instr fin ret 𝜎 stk (Iop op ®𝑎 𝑑 𝑛) (𝑑 <= 𝑒) (𝜎 <= 𝑛)
Assuming that the translation of the operator op with operands ®𝑎 is successful and results in

expression 𝑒 , the rule describes how the destination register 𝑑 is updated to 𝑒 via a non-blocking

assignment in the data path, and how the program counter 𝜎 is updated to point to the next CFG

node 𝑛 via another non-blocking assignment in the control logic.
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In the following lemma, spec_htl is the top-level specification predicate, which is built using

spec_instr at the level of instructions.

Lemma 2. If a 3AC program 𝑐 is translated correctly to an HTL program ℎ, then the specification of
the translation holds.

∀𝑐, ℎ, tr_htl(𝑐) = OK(ℎ) =⇒ spec_htl 𝑐 ℎ.

4.3.2 From Specification to Simulation. To prove that the specification predicate implies the desired

forward simulation, we must first define a relation that matches each 3AC state to an equivalent

HTL state. This relation also captures the assumptions made about the 3AC code that we receive

from CompCert. These assumptions then have to be proven to always hold assuming the HTL code

was created by the translation algorithm. Some of the assumptions that need to be made about the

3AC and HTL code for a pair of states to match are:

• The 3AC register file 𝑅 needs to be ‘less defined’ than the HTL register map Γ𝑟 (written

𝑅 ≤ Γ𝑟 ). This means that all entries should be equal to each other, unless a value in 𝑅 is

undefined, in which case any value can match it.

• The RAM values represented by each Verilog array in Γ𝑎 need to match the 3AC function’s

stack contents, which are part of the memory𝑀 ; that is:𝑀 ≤ Γ𝑎 .
• The state is well formed, which means that the value of the state register matches the current

value of the program counter; that is: pc = Γ𝑟 [𝜎].
We also define the following set I of invariants that must hold for the current state to be valid:

• that all pointers in the program use the stack as a base pointer,

• that any loads or stores to locations outside of the bounds of the stack result in undefined

behaviour (and hence we do not need to handle them),

• that rst and fin are not modified and therefore stay at a constant 0 throughout execution, and

• that the stack frames match.

We can now define the simulation diagram for the translation. The 3AC state can be represented

by the tuple (𝑅,𝑀, pc), which captures the register file, memory, and program counter. The HTL

state can be represented by the pair (Γ𝑟 , Γ𝑎), which captures the states of all the registers and arrays

in the module. Finally, I stands for the other invariants that need to hold for the states to match.

Lemma 3. Given the 3AC state (𝑅,𝑀, pc) and the matching HTL state (Γ𝑟 , Γ𝑎), assuming one step in
the 3AC semantics produces state (𝑅′, 𝑀 ′, pc′), there exist one or more steps in the HTL semantics that
result in matching states (Γ′𝑟 , Γ′𝑎). This is all under the assumption that the specification spec_htl
holds for the translation.

𝑅,𝑀, pc Γ𝑟 , Γ𝑎

𝑅′, 𝑀 ′, pc′ Γ′𝑟 , Γ
′
𝑎

I ∧ (𝑅 ≤ Γ𝑟 ) ∧ (𝑀 ≤ Γ𝑎) ∧ (pc = Γ𝑟 [𝜎])

+
I ∧ (𝑅′ ≤ Γ′𝑟 ) ∧ (𝑀 ′ ≤ Γ′𝑎) ∧ (pc′ = Γ′𝑟 [𝜎])

Proof sketch. This simulation diagram is proven by induction over the operational semantics

of 3AC, which allows us to find one or more steps in the HTL semantics that will produce the same

final matching state. □
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Idle

Γr [r .en] = Γr [r .uen]
((Γr, Γa),Δ, 𝑟 ) ↓ram Δ

Load

Γr [r .en] ≠ Γr [r .uen] Γr [r .wren] = 0

((Γr, Γa), (Δr,Δa), 𝑟 ) ↓ram (Δr [r .en ↦→ r .uen, r .dout ↦→ (Γa [r .mem]) [r .addr]],Δa)
Store

Γr [r .en] ≠ Γr [r .uen] Γr [r .wren] = 1

((Γr, Γa), (Δr,Δa), 𝑟 ) ↓ram (Δr [r .en ↦→ r .u_en],Δa [r .mem ↦→ (Γa [r .mem]) [r .addr ↦→ r .din]])

Fig. 8. Specification for the memory implementation in HTL, where 𝑟 is the RAM, which is then implemented
by equivalent Verilog code.

4.4 Forward Simulation of RAM Insertion
HTL can only represent a single state machine, so we must model the RAM abstractly to reason

about the correctness of replacing the direct read and writes to the array by loads and stores to a

RAM. The specification for the RAM is shown in Fig. 8, which defines how the RAM 𝑟 will behave

for all the possible combinations of the input signals.

4.4.1 From Implementation to Specification. The first step in proving the simulation correct is to

build a specification of the translation algorithm. There are three possibilities for the transformation

of an instruction. For each Verilog statement in the map at location 𝑖 , the statement is either a

load, a store, or neither. The load or store is translated to the equivalent representation using the

RAM specification and all other instructions are left intact. An example of the specification for the

translation of the store instruction is shown below, where 𝜎 is state register, 𝑟 is the RAM, 𝑑 and 𝑐

are the input data-path and control logic maps, and 𝑖 is the current state. (𝑛 is the newly inserted

state, which only applies to the translation of loads.)

Store Spec

𝑑 [𝑖] = (𝑟 .𝑚𝑒𝑚[𝑒1] <= 𝑒2)
𝑡 = (𝑟 .𝑢_𝑒𝑛 <= ¬𝑟 .𝑢_𝑒𝑛; 𝑟 .𝑤𝑟_𝑒𝑛 <= 1; 𝑟 .𝑑_𝑖𝑛 <= 𝑒2; 𝑟 .𝑎𝑑𝑑𝑟 <= 𝑒1)

spec_ram_tr 𝜎 𝑟 𝑑 𝑐 𝑑 [𝑖 ↦→ 𝑡] 𝑐 𝑖 𝑛
A similar specification is created for the load. We then also prove that the implementation of the

translation proves that the specification holds.

4.4.2 From Specification to Simulation. Another simulation proof is performed to prove that the

insertion of the RAM is semantics preserving. As in Lemma 3, we require some invariants that

always hold at the start and end of the simulation. The invariants needed for the simulation of the

RAM insertion are quite different to the previous ones, so we can define these invariants I𝑟 to be

the following:

• The association map for arrays Γ𝑎 always needs to have the same arrays present, and these

arrays should never change in size.

• The RAM should always be disabled at the start and the end of each simulation step. (This is

why self-disabling RAM is needed.)

The other invariants and assumptions for defining two matching states in HTL are quite similar

to the simulation performed in Lemma 3, such as ensuring that the states have the same value, and
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that the values in the registers are less defined. In particular, the less defined relation matches up

all the registers, except for the new registers introduced by the RAM.

Lemma 4 (Forward simulation from HTL to HTL after inserting the RAM). Given an HTL
program, the forward-simulation relation should hold after inserting the RAM and wiring the load,
store, and control signals.

∀ℎ,ℎ′, 𝐵 ∈ Safe, tr_ram_ins(ℎ) = ℎ′ ∧ ℎ ⇓ 𝐵 =⇒ ℎ′ ⇓ 𝐵.

4.5 Forward Simulation from HTL to Verilog
The HTL-to-Verilog simulation is conceptually simple, as the only transformation is from the map

representation of the code to the case-statement representation. The proof is more involved, as the

semantics of a map structure is quite different to that of the case-statement to which it is converted.

Lemma 5 (Forward simulation from HTL to Verilog). In the following, we write tr_verilog
for the translation from HTL to Verilog. (Note that this translation cannot fail, so we do not need the
OK constructor here.)

∀ℎ,𝑉 , 𝐵 ∈ Safe, tr_verilog(ℎ) = 𝑉 ∧ ℎ ⇓ 𝐵 =⇒ 𝑉 ⇓ 𝐵.

Proof sketch. The translation from maps to case-statements is done by turning each node

of the tree into a case-expression containing the same statements. The main difficulty is that a

random-access structure is being transformed into an inductive structure where a certain number

of constructors need to be called to get to the correct case. □

4.6 Deterministic Verilog Semantics
The final lemma we need is that the Verilog semantics is deterministic. This result allows us to

replace the forwards simulation we have proved with the backwards simulation we desire.

Lemma 6. If a Verilog program 𝑉 admits behaviours 𝐵1 and 𝐵2, then 𝐵1 and 𝐵2 must be the same.

∀𝑉 , 𝐵1, 𝐵2, 𝑉 ⇓ 𝐵1 ∧𝑉 ⇓ 𝐵2 =⇒ 𝐵1 = 𝐵2.

Proof sketch. The Verilog semantics is deterministic because the order of operation of all the

constructs is defined, so there is only one way to evaluate the module, and hence only one possible

behaviour. This was proven for the small-step semantics shown in Fig. 6. □

4.7 Coq Mechanisation
The lines of code for the implementation and proof of Vericert can be found in Table 1. Overall, it

took about 1.5 person-years to build Vericert – about three person-months on implementation and

15 person-months on proofs. The largest proof is the correctness proof for the HTL generation,

which required equivalence proofs between all integer operations supported by CompCert and

those supported in hardware. From the 3069 lines of proof code in the HTL generation, 1189 are for

the correctness proof of just the load and store instructions. These were tedious to prove correct

because of the substantial difference between the memory models used, and the need to prove

properties such as stores outside of the allocated memory being undefined, so that a finite array

could be used. In addition to that, since pointers in HTL and Verilog are represented as integers,

instead of as a separate ‘pointer’ type like in the CompCert semantics, it was painful to reason about

them. Many new theorems had to be proven about them in Vericert to prove the conversion from

pointer to integer. Moreover, the second-largest proof of the correct RAM generation includes many

proofs about the extensional equality of array operations, such as merging arrays with different
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Table 1. Statistics about the numbers of lines of code in the proof and implementation of Vericert.

Coq code OCaml
code

Spec Theorems &
Proofs

Total

Data structures and libraries 280 — — 500 780

Integers and values 98 — 15 968 1081

HTL semantics 50 — 181 65 296

HTL generation 590 — 66 3069 3725

RAM generation 253 — — 2793 3046

Verilog semantics 78 — 431 235 744

Verilog generation 104 — — 486 590

Top-level driver, pretty printers 318 775 — 189 1282

Total 1721 775 693 8355 11544

assignments. As the negative edge implies that two merges take place every clock cycle, the proofs

about the equality of the contents in memory and in the merged arrays become more tedious too.

Looking at the trusted computing base of Vericert, the Verilog semantics is 431 lines of code.

This and the Clight semantics from CompCert are the only parts of the compiler that need to be

trusted. The Verilog semantics specification is therefore much smaller compared to the 1721 lines

of the implementation that are written in Coq, which are the verified parts of the HLS tool, even

when the Clight semantics are added. In addition to that, understanding the semantics specification

is simpler than trying to understand the translation algorithm. We conclude that the trusted base

has been successfully reduced.

5 EVALUATION
Our evaluation is designed to answer the following four research questions.

RQ1 How fast is the hardware generated by Vericert?

RQ2 How area-efficient is the hardware generated by Vericert?

RQ3 How quickly does Vericert translate the C into Verilog?

RQ4 How effective is the correctness theorem in Vericert?

5.1 Experimental Setup
Choice of HLS tool for comparison. We compare Vericert against LegUp 4.0, because it is open-

source and hence easily accessible, but still produces hardware “of comparable quality to a commer-

cial high-level synthesis tool” [Canis et al. 2011]. We also compare against LegUp with different

optimisation levels in an effort to understand which optimisations have the biggest impact on the

performance discrepancies between LegUp and Vericert. The baseline LegUp version has all the

default automatic optimisations turned on. First, we only turn off the LLVM optimisations in LegUp,

to eliminate all the optimisations that are common to standard software compilers, referred to as

‘LegUp no-opt’. Secondly, we also compare against LegUp with LLVM optimisations and operation

chaining turned off, referred to as ‘LegUp no-opt no-chaining’. Operation chaining [Paulin and

Knight 1989; Venkataramani and Goldstein 2007] is an HLS-specific optimisation that combines

data-dependent operations into one clock cycle, and therefore dramatically reduces the number of

cycles, without necessarily decreasing the clock speed.
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Choice and preparation of benchmarks. We evaluate Vericert using the PolyBench/C benchmark

suite (version 4.2.1) [Pouchet 2020], which is a collection of 30 numerical kernels. PolyBench/C is

popular in the HLS context [Choi and Cong 2018; Pouchet et al. 2013; Zhao et al. 2017; Zuo et al.

2013], since it has affine loop bounds, making it attractive for streaming computation on FPGA

architectures. We were able to use 27 of the 30 programs; three had to be discarded (correla-
tion, gramschmidt and deriche) because they involve square roots, requiring floats, which we do

not support. We configured PolyBench/C’s parameters so that only integer types are used. We use

PolyBench/C’s smallest datasets for each program to ensure that data can reside within on-chip

memories of the FPGA, avoiding any need for off-chip memory accesses. We have not modified the

benchmarks to make them run through LegUp optimally, e.g. by adding pragmas that trigger more

advanced optimisations.

Vericert implements divisions and modulo operations in C using the corresponding built-in

Verilog operators. These built-in operators are designed to complete within a single clock cycle,

and this causes substantial penalties in clock frequency. Other HLS tools, including LegUp, supply

their own multi-cycle division/modulo implementations, and we plan to do the same in future

versions of Vericert. Implementing pipelined operators such as the divide and modulus operator

can be solved by scheduling the instructions so that these can execute in parallel, which is the main

optimisation that needs to be added to Vericert. In the meantime, we have prepared an alternative

version of the benchmarks in which each division/modulo operation is replaced with our own

implementation that uses repeated division and multiplications by 2. Fig. 9 shows the results of

comparing Vericert with optimised LegUp 4.0 on the PolyBench/C benchmarks, where divisions

have been left intact. Fig. 10 performs the comparison where the division/modulo operations have

been replaced by the iterative algorithm.

Synthesis setup. The Verilog that is generated by Vericert or LegUp is provided to Xilinx Vivado

v2017.1 [Xilinx 2019], which synthesises it to a netlist, before placing-and-routing this netlist onto

a Xilinx XC7Z020 FPGA device that contains approximately 85000 LUTs.

5.2 RQ1: How Fast is Vericert-Generated Hardware?
Firstly, before comparing any performance metrics, it is worth highlighting that any Verilog

produced by Vericert is guaranteed to be correct, whilst no such guarantee can be provided by

LegUp. This guarantee in itself provides a significant leap in terms of HLS reliability, compared to

any other HLS tools available.

The top graphs of Fig. 9 and Fig. 10 compare the execution time of the 27 programs executed

by Vericert and the different optimisation levels of LegUp. Each graph uses optimised LegUp

as the baseline. When division/modulo operations are present LegUp designs execute around

27× faster than Vericert designs. However, when division/modulo operations are replaced by the

iterative algorithm, LegUp designs are only 2× faster than Vericert designs. The benchmarks with

division/modulo replaced show that Vericert actually achieves the same execution speed as LegUp

without LLVM optimisations and without operation chaining, which is encouraging, and shows

that the hardware generation is following the right steps. The execution time is calculated by

multiplying the maximum frequency that the FPGA can run at with this design, by the number of

clock cycles that are needed to complete the execution. We can therefore analyse each separately.

First, looking at the difference in clock cycles, Vericert produces designs that have around

4.5× as many clock cycles as LegUp designs in both cases, when division/modulo operations are

enabled as well as when they are replaced. This performance gap can be explained in part by

LLVM optimisations, which seem to account for a 2× decrease in clock cycles, as well as operation

chaining, which decreases the clock cycles by another 2×. The rest of the speed-up is mostly due

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 117. Publication date: October 2021.



117:22 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson

1

10

100

E
x
e
c
u
t
i
o
n
t
i
m
e
r
e
l
a
t
i
v
e
t
o
L
e
g
U
p

2
m
m

3
m
m

a
d
i

a
t
a
s

b
i
c
g

c
h
o
l
e
s
k
y

c
o
v
a
r
i
a
n
c
e

d
o
i
t
g
e
n

d
u
r
b
i
n

f
d
t
d
-
2
d

fl
o
y
d
-
w
a
r
s
h
a
l
l

g
e
m
m

g
e
m
v
e
r

g
e
s
u
m
m
v

h
e
a
t
-
3
d

j
a
c
o
b
i
-
1
d

j
a
c
o
b
i
-
2
d

l
u

l
u
d
c
m
p

m
v
t

n
u
s
s
i
n
o
v

s
e
i
d
e
l
-
2
d

s
y
m
m

s
y
r
2
k

s
y
r
k

t
r
i
s
o
l
v

t
r
m
m

m
ed

ia
n

1

10

A
r
e
a
r
e
l
a
t
i
v
e
t
o
L
e
g
U
p

Vericert LegUp no-opt no-chaining LegUp no-opt

Fig. 9. Performance of Vericert compared to LegUp, with division and modulo operations enabled. The top
graph compares the execution times and the bottom graph compares the area of the generated designs. In
both cases, the performance of Vericert, LegUp without LLVM optimisations and without operation chaining,
and LegUp without LLVM optimisations is compared against default LegUp.

to LegUp optimisations such as scheduling and memory analysis, which are designed to extract

parallelism from input programs. This gap does not represent the performance cost that comes

with formally proving an HLS tool. Instead, it is simply a gap between an unoptimised Vericert

versus an optimised LegUp. As we improve Vericert by incorporating further optimisations, this

gap should reduce whilst preserving the correctness guarantees.

Secondly, looking at the maximum clock frequency that each design can achieve, LegUp designs

achieve 8.2× the maximum clock frequency of Vericert when division/modulo operations are

present. This is in great contrast to the maximum clock frequency that Vericert can achieve when

no divide/modulo operations are present, where Vericert generates designs that are actually 2×
better than the frequency achieved by LegUp designs. The dramatic discrepancy in performance for

the former case can be largely attributed to Vericert’s naïve implementations of division and modulo

operations, as explained in Section 5.1. Indeed, Vericert achieved an average clock frequency of just

13MHz, while LegUp managed about 111MHz. After replacing the division/modulo operations with

our own C-based implementations, Vericert’s average clock frequency becomes about 220MHz.

This improvement in frequency can be explained by the fact that LegUp uses a memory controller

to manage multiple RAMs using one interface, which is not needed in Vericert as a single RAM is

used for the memory.
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Fig. 10. Performance of Vericert compared to LegUp, with division and modulo operations replaced by
an iterative algorithm in software. The top graph compares the execution times and the bottom graph
compares the area of the generated designs. In both cases, the performance of Vericert, LegUp without LLVM
optimisations and without operation chaining, and LegUp without LLVM optimisations is compared against
default LegUp.

Looking at a few benchmarks in particular in Fig. 10 for some interesting cases. For the trmm
benchmark, Vericert produces hardware that executes with the same cycle count as LegUp, and

manages to create hardware that achieves twice the frequency compared to LegUp, thereby actually

producing a design that executes twice as fast as LegUp. Another interesting benchmark is doitgen,
where Vericert is comparable to LegUp without LLVM optimisations, however, LLVM optimisations

seem to have a large effect on the cycle count.

5.3 RQ2: How Area-Efficient is Vericert-Generated Hardware?
The bottom graphs in both Fig. 9 and Fig. 10 compare the resource utilisation of the PolyBench/C

programs generated by Vericert and LegUp at various optimisation levels. By looking at the median,

when division/modulo operations are enabled, we see that Vericert produces hardware that is about

the same size as optimised LegUp, whereas the unoptimised versions of LegUp actually produce

slightly smaller hardware. This is because optimisations can often increase the size of the hardware

to make it faster. Especially in Fig. 9, there are a few benchmarks where the size of the LegUp

design is much smaller than that produced by Vericert. This can mostly be explained because of

resource sharing in LegUp. Division/modulo operations need large circuits, and it is therefore usual
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40379 passes (26.00%) 114849 compile-time errors (73.97%) 39 run-time errors (0.03%)

Fig. 11. Results of fuzzing Vericert using 155267 random C programs generated by Csmith.

to only have one circuit per design. As Vericert uses the naïve implementation of division/modulo,

there will be multiple circuits present in the design, which blows up the size. Looking at Fig. 10,

one can see that without division, the size of Vericert designs are almost always around the same

size as LegUp designs, never being more than 2× larger, and sometimes even being smaller. The

similarity in area also shows that RAM is correctly being inferred by the synthesis tool, and is

therefore not implemented using registers.

5.4 RQ3: HowQuickly does Vericert Translate the C into Verilog?
LegUp takes around 10× as long as Vericert to perform the translation from C into Verilog, show-

ing at least that verification does not have a substantial effect on the run-time of the HLS tool.

However, this is a meaningless victory, as a lot of the extra time that LegUp uses is on performing

computationally heavy optimisations such as loop pipelining and scheduling.

5.5 RQ4: How Effective is the Correctness Theorem in Vericert?
“Beware of bugs in the above code; I have only proved it correct, not tried it.”

– D. E. Knuth (1977)

To gain further confidence that the Verilog designs generated by Vericert are actually correct,

and that the correctness theorem is indeed effective, we fuzzed Vericert using Csmith [Yang et al.

2011]. Yang et al. previously used Csmith in an extensive fuzzing campaign on CompCert and found

a handful of bugs in the unverified parts of that compiler, so it is natural to explore whether it can

find bugs in Vericert too. Herklotz et al. [2021a] have recently used Csmith to fuzz other HLS tools

including LegUp, so we configured Csmith in a similar way. In addition to the features turned off

by Herklotz et al., we turned off the generation of global variables and non-32-bit operations. The

generated designs were tested by simulating them and comparing the output value to the results of

compiling the test-cases with GCC 10.3.0.

The results of the fuzzing run are shown in Fig. 11. Out of 155267 test-cases generated by Csmith,

26% of them passed, meaning they compiled without error and resulted in the same final value as

GCC. Most of the test-cases, 73.97%, failed at compile time. The most common reasons for this were

unsigned comparisons between integers (Vericert requires them to be signed), and the presence

of 8-bit operations (which Vericert does not support, and which we could not turn off due to a

limitation in Csmith). Because the test-cases generated by Csmith could not be tailored exactly to

the C fragment that Vericert supports, such a high compile-time failure rate is expected. Finally, and

most interestingly, there were a total of 39 run-time failures, which the correctness theorem should

be proving impossible. However, all 39 of these failures are due to a bug in the pretty-printing

of the final Verilog code, where a logical negation (!) was accidentally used instead of a bitwise

negation (~). Once this bug was fixed, all test-cases passed.

6 RELATEDWORK
A summary of the related works can be found in Fig. 12, which is represented as an Euler diagram.

The categories chosen for the Euler diagram are: whether the tool is usable, whether it takes a
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Standard HLS tools

[Canis et al. 2011; Intel 2020b]

[Nigam et al. 2020; Xilinx 2020]

Translation validation approaches

[Clarke et al. 2003; Kundu et al. 2008; Mentor 2020]

Vericert
Kôika [Bourgeat et al. 2020]

Lööw [2021]
Ellis [2008]

Perna and Woodcock [2012]

BEDROC [Chapman et al. 1992]

Correctness

proof

Mechanised

correctness proof

Usable tool High-level software input

Fig. 12. Summary of related work

high-level software language as input, whether it has a correctness proof, and finally whether that

proof is mechanised. The goal of Vericert is to cover all of these categories.

Most practical HLS tools [Canis et al. 2011; Intel 2020b; Nigam et al. 2020; Xilinx 2020] fit into

the category of usable tools that take high-level inputs. On the other end of the spectrum, there are

tools such as BEDROC [Chapman et al. 1992] for which there is no practical tool, and even though

it is described as high-level synthesis, it more closely resembles today’s logic synthesis tools.

Ongoing work in translation validation [Pnueli et al. 1998] seeks to prove equivalence between

the hardware generated by an HLS tool and the original behavioural description in C. An example of

a tool that implements this is Mentor’s Catapult [Mentor 2020], which tries to match the states in the

hardware description to states in the original C code after an unverified translation. Using translation

validation is quite effective for verifying complex optimisations such as scheduling [Chouksey

and Karfa 2020; Karfa et al. 2006; Youngsik Kim et al. 2004] or code motion [Banerjee et al. 2014;

Chouksey et al. 2019], but the validation has to be run every time the HLS is performed. In addition

to that, the proofs are often not mechanised or directly related to the actual implementation,

meaning the verifying algorithm might be wrong and hence could give false positives or false

negatives.

Finally, there are a few relevant mechanically verified tools. First, Kôika is a formally verified

translator from a core fragment of BlueSpec into a circuit representation which can then be printed

as a Verilog design. This is a translation from a high-level hardware description language into

an equivalent circuit representation, so is a different approach to HLS. Lööw and Myreen [2019]

used a proof-producing translator from HOL4 code describing state transitions into Verilog to

design a verified processor, which is described further by Lööw et al. [2019]. Lööw [2021] has also

worked on formally verifying a logic synthesis tool that can transform hardware descriptions into

low-level netlists. This synthesis back end can seamlessly integrate with the proof-producing HOL4

to Verilog translator as it is based on the same Verilog semantics, and therefore creates verified

translation from HOL4 circuit descriptions to synthesised Verilog netlists. Perna et al. designed a

formally verified translator from a deep embedding of Handel-C [Aubury et al. 1996] into a deep

embedding of a circuit [Perna and Woodcock 2012; Perna et al. 2011]. Finally, Ellis [2008] used
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Isabelle to implement and reason about intermediate languages for software/hardware compilation,

where parts could be implemented in hardware and the correctness could still be shown.

7 LIMITATIONS AND FUTUREWORK
There are various limitations in Vericert compared to other HLS tools due to the fact that our

main focus was on formally verifying the translation from 3AC to Verilog. In this section, we

outline the current limitations of our tool and suggest how they can be overcome in future work,

first describing limitations to the generated hardware, and then describing the limitations on the

software input that Vericert accepts.

7.1 Limitations to the Generated Hardware
Lack of instruction-level parallelism. The main limitation of Vericert is that it does not perform

instruction scheduling, which means that instructions cannot be gathered into the same state and

executed in parallel. However, each language in Vericert was designed with scheduling in mind, so

that these should not have to change fundamentally when that is implemented in the future. For

instance, our HTL language already allows arbitrary Verilog to appear in each state of the FSMD;

currently, each state just contains a single Verilog assignment, but when scheduling is added, it

will contain a list of assignments that can all be executed in parallel. We expect to follow the lead

of Tristan and Leroy [2008] and Six et al. [2020], who have previously added scheduling support to

CompCert in a VLIW context, by invoking an external (unverified) scheduling tool and then using

translation validation to verify that each generated schedule is correct (as opposed to verifying the

scheduling tool itself).

Lack of pipelined division. Pipelined operators can execute different stages of an operation in

parallel, and thus perform several long-running operations simultaneously while sharing the

same hardware. The introduction of pipelined operators to Vericert, especially for division, would

alleviate the slow clock speed observed in the PolyBench/C benchmarks when divisions were

included (Fig. 9). In HTL, pipelined operations could be represented in a similar fashion to load and

store instructions, by using wires to communicate with an abstract computation block modelled in

HTL and later replaced by a hardware implementation.

7.2 Limitations on the Software Input
Limitations with I/O. Vericert is currently limited in terms of I/O because the main function

cannot accept any arguments if the Clight program is to be well-formed.
6
Moreover, external

function calls that produce traces have not been implemented yet, but these could enable the C

program to read and write values on a bus that is shared with various other components in the

hardware design.

Lack of support for global variables. In CompCert, each global variable is stored in its ownmemory.

A generalisation of our translation of the stack into a RAM block could therefore translate global

variables in the same manner. This would require a slight generalisation of pointers so that they

store provenance information to ensure that each pointer accesses the right RAM. It would also

be necessary to generalise the RAM interface so that it decodes the provenance information and

indexes the correct array.

Other language restrictions. C and Verilog handle signedness quite differently. By default, all

operators and registers in Verilog (and HTL) are unsigned, so to force an operation to handle the

6
Technically, Vericert (and indeed, CompCert) can compile main functions that have arbitrary arguments and will handle

those inputs appropriately, but the correctness theorem offers no guarantees about such programs.
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bits as signed, both operators have to be forced to be signed. Moreover, Verilog implicitly resizes

expressions to the largest needed size by default, which can affect the result of the computation.

This feature is not supported by the Verilog semantics we adopted, so to match the semantics to the

behaviour of the simulator and synthesis tool, braces are placed around all expressions to inhibit

implicit resizing. Instead, explicit resizing is used in the semantics, and operations can only be

performed on two registers that have the same size.

Furthermore, equality checks between unsigned variables are actually not supported, because this

requires supporting the comparison of pointers, which should only be performed between pointers

with the same provenance. In Vericert there is currently no way to determine the provenance of a

pointer, and it therefore cannot model the semantics of unsigned comparison in CompCert. This is

not a severe restriction in practice however, because in the absence of dynamic allocation, equality

comparison of pointers is rarely needed, and equality comparison of integers can still be performed

by casting them both to signed integers.

Finally, the mulhs and mulhu instructions, which fetch the upper bits of a 32-bit multiplication,

are not translated by Vericert, because 64-bit numbers are not supported. These instructions are

only generated to optimise divisions by a constant that is not a power of two, so turning off constant

propagation will allow these programs to pass without error.

8 CONCLUSION
We have presented Vericert, the first mechanically verified HLS tool for translating software in C

into hardware in Verilog. We built Vericert by extending CompCert with a new hardware-specific

intermediate language and a Verilog back end, and we verified it with respect to a semantics for

Verilog due to Lööw and Myreen [2019]. We evaluated Vericert against the existing LegUp HLS

tool on the PolyBench/C benchmark suite. Currently, our hardware is 27× slower and 1.1× larger

compared to LegUp, though it is only 2× slower if inefficient divisions are removed.

There are abundant opportunities for improving Vericert’s performance. For instance, as discussed

in Section 5, simply replacing the naïve single-cycle division and modulo operations with C

implementations increases clock frequency by 8.2×. Beyond this, we plan to implement scheduling

and loop pipelining, since this allows more operations to be packed into fewer clock cycles. Other

optimisations include resource sharing to reduce the circuit area, and using tailored hardware

operators that exploit the hard IP blocks of the chip and can be pipelined.

Finally, it’s worth considering how trustworthy Vericert is compared to other HLS tools. The

guarantee of full functional equivalence between input and output has been both proven and

fuzz-tested; the semantics for the source and target languages are both well established; and Coq

is a mature and thoroughly tested system. Nonetheless, Vericert cannot guarantee to provide an

output for every valid input – for instance, as remarked in Section 4.5, Vericert will error out if

given a program with more than about four million instructions! – but our evaluation indicates

that it does not seem to error out too frequently. And of course, Vericert cannot guarantee that

the final hardware produced will be correct, because the Verilog it generates must pass through a

series of unverified tools along the way. That concern may be allayed in the future thanks to recent

work by Lööw [2021] to produce a verified logic synthesis tool.
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