
Finding and Understanding Bugs in FPGA Synthesis Tools
Yann Herklotz

yann.herklotz15@imperial.ac.uk
Imperial College London

London, UK

John Wickerson
j.wickerson@imperial.ac.uk
Imperial College London

London, UK

ABSTRACT
All software ultimately relies on hardware functioning correctly.
Hardware correctness is becoming increasingly important due to
the growing use of custom accelerators using FPGAs to speed up
applications on servers. Furthermore, the increasing complexity of
hardware also leads to ever more reliance on automation, meaning
that the correctness of synthesis tools is vital for the reliability of
the hardware.

This paper aims to improve the quality of FPGA synthesis tools
by introducing a method to test them automatically using randomly
generated, correct Verilog, and checking that the synthesised netlist
is always equivalent to the original design. The main contributions
of this work are twofold: firstly a method for generating random
behavioural Verilog free of undefined values, and secondly a Verilog
test case reducer used to locate the cause of the bug that was found.
These are implemented in a tool called Verismith. This paper also
provides a qualitative and quantitative analysis of the bugs found in
Yosys, Vivado, XST and Quartus Prime. Every synthesis tool except
Quartus Prime was found to introduce discrepancies between the
netlist and the design. In addition to that, Vivado and a development
version of Yosys were found to crash when given valid input. Using
Verismith, eleven bugs were reported to tool vendors, of which six
have already been fixed.

CCS CONCEPTS
• Hardware → Electronic design automation; Hardware de-
scription languages and compilation; • Software and its en-
gineering → Software verification and validation.

KEYWORDS
fuzzing, logic synthesis, Verilog, test case reduction

ACM Reference Format:
Yann Herklotz and John Wickerson. 2020. Finding and Understanding Bugs
in FPGA Synthesis Tools. In Proceedings of the 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA ’20), February 23–
25, 2020, Seaside, CA, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3373087.3375310

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’20, February 23–25, 2020, Seaside, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7099-8/20/02. . . $15.00
https://doi.org/10.1145/3373087.3375310

1 module top (y, clk, w1);
2 output y;
3 input clk;
4 input signed [1:0] w1;
5 reg r1 = 1'b0;
6 assign y = r1;
7 always @(posedge clk)
8 if ({-1'b1 == w1}) r1 <= 1'b1;
9 endmodule

Figure 1: Vivado bug found automatically by Verismith. Vi-
vado incorrectly expands -1’b1 to -2’b11 instead of -2’b01.
The bug was reported and confirmed by Xilinx.1

1 INTRODUCTION
Almost all digital computation performed in the world today re-
lies, in one way or another, on a logic synthesis tool. Computation
specified in RTL passes through a logic synthesis tool before being
implemented on an FPGA or an ASIC. Even designs that are ex-
pressed in higher-level languages eventually get synthesised down
to RTL. Computation that is executed in software is carried out on
a processor whose design has also, at some point, passed through a
logic synthesis tool.

These tools are not only pervasive: they are trusted. That is,
any bugs they contain undermine efforts to ensure the correctness
of hardware designs. For instance, the Silver processor has been
formally proven to implement its ISA correctly [15], and the Kami
platform enables hardware designs to be formally verified using
Coq [5]. Yet in both cases, the final hardware is only as reliable as
the logic synthesis tool that produces it. That these tools are trusted
is explicitly acknowledged – Silver’s correctness proof assumes
that the “toolchain taking Verilog to FPGA bitstreams is bug-free”,
while Kami’s guarantees hold only “if we trust [the] compiler to
preserve the semantics.” We ask in this paper whether this trust is
well placed.

Logic synthesis tools are prone to bugs because of the complexity
involved in performing the aggressive optimisations that are re-
quired to meet power consumption and timing demands. Moreover,
these bugs are likely to be particularly egregious because they can
be hard to detect. This is especially the case when synthesising large
designs, because post-synthesis simulation or verification is often
skipped, or is only performed towards the end of the development
cycle, due to time constraints. Even when these bugs are detected
during post-synthesis testing, the root cause can be extremely chal-
lenging to isolate and work around [16]. With hardware designs
growing ever larger and increasingly being created by software

1https://forums.xilinx.com/t5/Synthesis/Vivado-2019-1-Unsigned-bit-extension-in-
if-statement/td-p/981789

Session: High-Level Synthesis and Tools FPGA ’20, February 23–25, 2020, Seaside, CA, USA

277

https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1145/3373087.3375310
https://forums.xilinx.com/t5/Synthesis/Vivado-2019-1-Unsigned-bit-extension-in-if-statement/td-p/981789
https://forums.xilinx.com/t5/Synthesis/Vivado-2019-1-Unsigned-bit-extension-in-if-statement/td-p/981789
https://www.acm.org/publications/policies/artifact-review-badging#reusable
https://www.acm.org/publications/policies/artifact-review-badging#available
https://www.acm.org/publications/policies/artifact-review-badging#replicated

Tool Vendor License Versions

XST [25] Xilinx Commercial 14.7
Vivado [24] Xilinx Commercial 2016.1, 2016.2,

2017.4, 2018.2,
2019.1

Quartus Prime [12] Intel Commercial 19.2
Quartus Prime Lite [12] Intel Commercial 19.1
Yosys [23] Yosys ISC License 0.8, 0.9, 3333e00,

70d0f38
Table 1: Versions of the synthesis tools that were tested.

engineers operating HLS tools, this inability to debug is becoming
ever more troublesome.

In this paper, we describe the design and implementation of a tool
called Verismith [9] for finding and understanding bugs in logic syn-
thesis tools that target FPGAs. Verismith generates pseudo-random,
valid, deterministic Verilog designs, feeds each to a synthesis tool,
and uses an SMT solver or the ABC [3] circuit verification tool to
check that the output is logically equivalent to the input. If they
are not equivalent, it has found a bug. Verismith then iteratively
reduces the Verilog design with the aim of finding the smallest (and
hence most understandable) program that still triggers a bug. An
example of such a bug that was found by Verismith is shown in
Figure 1. The test case has been tweaked manually for readability,
but it was found and reduced automatically by Verismith.

We ran Verismith on five major synthesis tools for FPGAs for
a total of 18000 CPU hours, as can be seen in Table 1. We found
two classes of bugs: Verilog designs that cause the synthesis tool
to produce incorrect output, and Verilog designs that cause the
synthesis tool to crash. We reported a total of 7 unique test cases
that are mis-synthesised: 4 in Yosys, 3 in Vivado. We also reported
3 unique crash bugs: 1 in Yosys and 2 in Vivado. In addition, a bug
was also found in Icarus Verilog [21], which is a simulator used in
Verismith to check counterexamples returned by the equivalence
check. All 11 test cases have been reported to the manufacturers;
the Yosys and Icarus Verilog bugs have all been confirmed and fixed,
whereas the Vivado bugs have been confirmed and are awaiting a
fix. Testing Quartus Prime proved difficult, however, once it worked,
we did not find any failing test cases, meaning it was quite stable.
Failing test cases found in XST were not reported, as it is no longer
being actively maintained.

The three main contributions of this paper are the following:

• We present an algorithm for generating random, valid, de-
terministic Verilog designs that employ a variety of combi-
national and behavioural constructs, shown in Section 3.

• We explain how to check whether a given Verilog design
triggers a bug in a synthesis tool under test in Section 4 and
then present an algorithm for reducing Verilog designs to
find the smallest program that triggers the bug in Section 5.

• Finally, in Section 6, we report the results of synthesising
our generated programs using three logic synthesis tools
and evaluate how our design decisions affect the ability of
Verismith to find bugs in these tools.

Verilog
generation

Verilog
design

Verilog
netlist

Reduced
test case

Synthesis

Equivalence
checkReduction

fail

crash

Figure 2: Overview of the testing approach used inVerismith
by generating random Verilog. If the synthesis tool crashes
or the equivalence check fails, the test case is reduced into a
minimal representation, shown by the red dashed arrows.

Verismith is fully open source and can be found on GitHub.2

2 OVERVIEW OF VERISMITH
Verismith is the implementation of the Verilog generation and test
case reduction algorithm with the goal of finding bugs in synthesis
tools. Figure 2 shows the main workflow in Verismith. First, a
random design is generated and passed to the synthesis tool, which
should produce an equivalent netlist. If the synthesis tool crashes,
a bug has been found and the initial design would therefore be
reduced to a minimal test case that still triggers the crash. This is
shown by the red dashed arrow which shortcuts an error occurring
in synthesis to the reduction step. However, if synthesis completes
successfully, the netlist is compared to the initial design. If they
differ, the resultant design needs to be reduced as well, which is
depicted by the other red dashed arrow.

Verismith generates semantically correct and deterministic Ver-
ilog, meaning that it should always pass synthesis and the values of
output wires should be uniquely determined by values of the input
wires. An equivalence check can therefore be performed between
the generated design and the synthesised netlist to determine if the
synthesis was correct. If the netlist is shown not to be equivalent
to the design, it must mean that there is a synthesis bug, as false
negatives and false positives are not possible. However, there is the
possibility that the SMT solver does not give an answer in time, in
which case it cannot be determined if the design is equivalent to
the netlist.

Verismith was implemented in Haskell because its algebraic data
types are well-suited for capturing the syntax of a language like
Verilog, and its pure functions make it easier to reason about and
test functions.

3 GENERATING VERILOG
To test the synthesis tools, valid random Verilog needs to be gener-
ated so that the synthesis tool successfully produces a netlist that
can be compared to the original design.

3.1 Target language
The synthesisable subset of Verilog 2005 [10] was chosen as the
target HDL as it is widely supported. Every generated Verilog file

2https://github.com/ymherklotz/verismith

Session: High-Level Synthesis and Tools FPGA ’20, February 23–25, 2020, Seaside, CA, USA

278

https://github.com/ymherklotz/verismith

contains a list of module definitions with an arbitrary number of
inputs and parameters, and one output. Themodule body consists of
a list of module items, which can be any of the following constructs:

• continuous assignment,
• local parameter declaration,
• module instantiation,
• always and initial block, and
• wire and variable declaration.

Inside always blocks and initial blocks, behavioural Verilog can
then be generated, which supports the following constructs:

• blocking and nonblocking assignments,
• conditional statements, and
• for loops.

Finally, many different expressions are supported, such as:
• all synthesisable unary and binary operators,
• bit selection,
• function calls,
• concatenation, and
• ternary conditional operators.

The most notable features that are missing from this grammar
subset are function and task definitions, but we expect adding them
to be straightforward. In addition to that, the synthesisable subset
of Verilog specifies many constructs that should be ignored by
synthesis tools, so these are also not generated by Verismith. These
are constructs that do not have a direct hardware equivalent and
include delays, specify blocks or system task calls. Although initial
blocks and variable initialisation are supposed to be ignored by the
synthesis tool, except when modelling ROMs [10, section 7.7.9.1],
both of these features are supported in all the synthesis tools that
were tested for FPGAs, as these can be powered up into a known
state. These are therefore used by Verismith to set the design in a
known state at the start.

3.2 Properties of generated programs
The data types specifying the syntax strictly follow the grammar,
with the result that only syntactically valid programs can be rep-
resented. However, this cannot guarantee that the programs are
semantically valid as well.

We define semantically valid programs as ones that should be
accepted by simulators and synthesis tools without producing any
errors or critical warnings. Even though random programs follow-
ing the grammar will pass the parsing stage of these tools, they will
most likely error out when they are processed. To ensure semantic
validity, several rules have to be followed, including:

• module inputs have to be nets,
• no continuous assignments to variables or blocking/non-
blocking assignments to nets occur, and

• every variable that is used has to be declared.
Moreover, the generated Verilog should be deterministic. This

simplifies the equivalence checking stage, as there cannot be any
false positives or false negatives. Therefore the equivalence check
indicates if there is a bug or not. In addition, we argue that bugs
found using purely deterministic Verilog are more severe than bugs
that include undefined values, as most Verilog in production is
deterministic and it is generally bad practice to write Verilog that

1 [probability]
2 expr.binary = 5
3 expr.concatenation = 3
4 expr.number = 1
5 expr.rangeselect = 5
6 expr.signed = 5
7 expr.string = 0
8 expr.ternary = 5
9 expr.unary = 5
10 expr.unsigned = 5
11 expr.variable = 5
12 moditem.assign = 5
13 moditem.combinational = 1
14 moditem.instantiation = 1
15 moditem.sequential = 1
16 statement.blocking = 0
17 statement.conditional = 1
18 statement.forloop = 1
19 statement.nonblocking = 3
20

21 [property]
22 module.depth = 2
23 module.max = 5
24 output.combine = false
25 sample.method = "random"
26 sample.size = 10
27 size = 20
28 statement.depth = 3

Figure 3: Configuration file used to tweak properties of the
generated program including frequencies of constructs.

depends on undefined values. Furthermore, undefined values might
mask bugs in the synthesis tool by allowing it to optimise away
large sections of the design. Therefore, other Verilog patterns have
to be avoided even though they are semantically and syntactically
correct. For example, some constructs that lead to nondeterministic
behaviour are the following:

• driving a wire from two different sources,
• dividing by zero,
• passing fewer bits to a module than it expects,
• selecting bits that are out of range, and
• using a net that has not been declared previously.

3.3 Generation algorithm
To generate Verilog that avoids these constructs, the syntax tree

is built sequentially, line by line, using a context to keep track of
important facts about previously generated code. This inherently
prohibits combinational loops, as all the values being assigned to
the current wire will already have been assigned beforehand. The
context contains: (1) a list of nets and variables that are declared
and assigned in the current context, (2) a list of modules that can
safely be instantiated and (3) a list of parameters that are available
in the module. These are used to safely create module items and
make sure that they do not introduce undefined values or race
conditions. When creating a new variable assignment, the nets can
be safely taken from the context as these are guaranteed to have
been assigned previously.

Session: High-Level Synthesis and Tools FPGA ’20, February 23–25, 2020, Seaside, CA, USA

279

The context also contains relative frequencies which are attached
to each construct that can be generated. These determine how
often a construct will appear in the output. We tweaked these
manually using a configuration file, shown in Figure 3, to obtain a
good coverage of all the features, while keeping the synthesis and
equivalence checking time to a minimum. In particular, maximum
statement list length and depth were heavily tweaked to reduce the
nesting depth of statements, as that would increase the synthesis
time and equivalence checking time exponentially. Operations like
divide and modulo were removed for most of the testing, because
with nets or variables containing a large number of bits, the circuits
generated by the synthesis tools were too large to be efficiently
optimised and checked for equivalence.

The output of the Verilog generation is a Verilog file containing
multiple modules. The entry point is a top-level module. For every
module, a random number of inputs with random sizes are chosen
and added to the context. A clock for sequential blocks and an out-
put port are also added. Random parameters are also declared and
added to the context so that they are available in any expressions
inside the module. Finally a list of module items are generated.

To ensure that expressions remain deterministic, extra checks
are performed to ascertain that no undefined values are added to an
expression. Checks can either be performed statically at generation
or dynamically at runtime. For example, if bits are selected from a
net, the size of the net is checked against the range of the selection
statically. However, runtime checks need to be added to operations
like division to check against division by zero. This is similar to
the safe math wrappers that are used in an existing C fuzzer called
Csmith [26] to avoid undefined behaviour like signed overflow.

Once the module items have finished generating, all the inter-
nally declared variables and nets are concatenated and assigned to
the output, so that any discrepancies in the internals of the module
are detected by the formal verification step. An example of a gener-
ated module is shown in Figure 4, which declares many variables
and concatenates them to the output y. Figure 4 also shows the
different sections that are created by Verismith. First come all the
declarations of the nets and variables that are used and assigned to
somewhere in the body of the module. Then follows the assignment
of the internal state of the module to the output wire y, so that
any errors in any of the assignments will be detected in the output.
Finally, the main body of the module contains a list of random
constructs, which were generated according to the configuration
file that was passed to Verismith.

Remark. If the number of IO ports is limited, because the design
first needs to fit onto an actual FPGA such as in Quartus Prime Lite,
the output can be reduced to one bit by applying the XOR reduction
operator. For example, the concatenation

assign y = {reg3,reg4,reg5,wire6,wire7,reg8,wire9};

can be changed to

assign y = ^{reg3,reg4,reg5,wire6,wire7,reg8,wire9};

This continues to hold all the necessary information to detect a
single bitflip in the internal state of the module, however, synthesis

1 module top #(parameter param0 = 5'h9e23848124)
2 (y, clk, wire0, wire1, wire2, wire3);
3 // *** Declarations ***
4 output wire [(5'h31):(1'h0)] y;
5 input wire [(1'h0):(1'h0)] clk;
6 input wire [(3'h6):(1'h0)] wire0;
7 input wire [(4'ha):(1'h0)] wire1;
8 input wire signed [(4'ha):(1'h0)] wire2;
9 input wire [(4'hb):(1'h0)] wire3;
10 reg [(3'h2):(1'h0)] reg20 = (1'h0);
11 reg [(3'h5):(1'h0)] reg19 = (1'h0);
12 reg [(3'h4):(1'h0)] reg18 = (1'h0);
13 reg [(2'h2):(1'h0)] reg17 = (1'h0);
14 reg [(4'ha):(1'h0)] reg16 = (1'h0);
15 reg signed [(4'h9):(1'h0)] reg15 = (1'h0);
16 wire [(3'h6):(1'h0)] wire5;
17 wire [(2'h3):(1'h0)] wire4;
18 // *** Assign output ***
19 assign y =
20 {reg20,reg19,reg18,reg17,reg16,reg15,wire5,wire4};
21 // *** Random module items ***
22 assign wire4 = (((~wire1) ? ((((15'h9ecc51592fdeb04)
23 ? reg17[(5'h2):(2'h2)] : (reg18 ? wire2 : wire0))
24 ? $unsigned(((-2'ha73a956341f45c0) << reg18)) :
25 wire1[(4'ha):(3'h7)]) - reg18) :
26 reg15[(4'h9):(3'h7)]) >>> $unsigned($signed((
27 reg16[(4'ha):(3'h7)] ? ((wire1 && reg16) &&
28 {reg15, reg15, wire3}) : (reg18 ? (~&wire3) :
29 (-39'ha7a1419cd4ea34a))))));
30 assign wire5 = $signed(((wire2 ? (
31 (-8'h5e411249da4f335) ? (4'hb2fa97daeae9ff) :
32 wire1) : (wire4 ? wire2 : wire1)) ?
33 $signed(wire3) : ({(7'hbac46141008d14)} >>>
34 (&wire0))));
35 always @(posedge clk) begin
36 for (reg15 = (1'h0); (reg15 < (2'h2)); reg15 =
37 (reg15 + (1'h1))) begin
38 if (((wire3 == (~(reg16 + wire1))) >=
39 {$signed(wire0[(2'h2):(1'h0)])}))
40 reg16 <= ($unsigned($unsigned(wire1)) <
41 wire3[(1'h1):(1'h1)]);
42 else reg16 <= $unsigned(reg17[(2'h2):(2'h0)]);
43 reg17 <= wire3[(1'h0):(1'h0)];
44 end
45 reg18 <= $signed(({wire0} ~^ wire3));
46 end
47 always @(posedge clk) begin
48 if (wire3[(4'h9):(3'h6)])
49 reg19 = $signed($unsigned(wire1)) <<
50 $unsigned({wire1});
51 reg20 <= ({({(~|wire3), $unsigned(reg19)} ?
52 reg16 : reg15[(2'h2):(1'h1)]),
53 (~&((wire0 ? wire3 : reg17) ~^ reg18))}
54 || ((~&(wire3[(4'hb):(4'h9)] ? wire4 : (+wire5)))));
55 end
56 endmodule

Figure 4: Example module generated by Verismith showing
the distinct sections that are produced.

Session: High-Level Synthesis and Tools FPGA ’20, February 23–25, 2020, Seaside, CA, USA

280

and verification are much slower because of the larger circuit. We
demonstrate this empirically in Section 6.

4 EQUIVALENCE CHECKING
The equivalence check is a crucial step in verifying that the synthe-
sis tool behaved properly by proving that the synthesised netlist is
equivalent to the original design. The equivalence check itself is
performed using Yosys [23] and the ABC [3] back end. However,
an SMT solver such as Z3 [7] can also be used as a back end to
perform the equivalence check. As only deterministic Verilog is
being tested, which does not contain any undefined values, the
equivalence check proves that the design is equivalent to the netlist
over all possible inputs.

The equivalence is checked using the following property: the
output wires of the randomly generated Verilog design and the
synthesised netlist should always be equal at the clock edge given
the same inputs. This is expressed in Verilog by instantiating both
modules and asserting that the outputs are equal:

1 module equiv(input clk, input [6:0] w0, input [10:0] w1
2 , input signed [10:0] w2, input [11:0] w3);
3 wire [49:0] y1, y2;
4 top t1(y1, clk, w0, w1, w2, w3);
5 top_synth_netlist t2(y2, clk, w0, w1, w2, w3);
6 always @(posedge clk) assert(y1 == y2);
7 endmodule

where y1 and y2 are the outputs of the design and the netlist re-
spectively. The Verilog is passed through Yosys synthesis to obtain
either SMT-LIBv2 [2] for an SMT solver, or a netlist for ABC.

As this process is performed by Yosys itself, when testing Yosys
synthesis there might be bugs that are not found by the equivalence
check, as the same bug will be present when design is passed to
the SMT solver or to ABC. However, bugs can still be found in opti-
misations that Yosys only applies when it is properly synthesising
the design instead of passing it to an external solver. In addition
to that, if Yosys is tested with multiple other synthesis tools, the
synthesised netlist produced by Yosys can be compared to the other
synthesised netlist instead of the original design. Therefore, the
bug in Yosys should not trigger anymore as it is only synthesising
two netlists. Finally, a test bench can also be created for the gener-
ated design and the netlist by passing random test vectors to both
top-level modules and checking that the output remains the same.

After the equivalence check is performed, the checker returns
a counterexample which can be added to a testbench and hence
simulated, to make sure that it does indeed expose a difference
between the design and the netlist.

5 TEST CASE REDUCTION
Reducing an HDL is different from reducing programming lan-
guages. The time it takes to discover the presence of an error is
much higher with synthesis and equivalence checking than with
compilation and execution. Existing reduction methods such as
delta debugging [28] or hierarchical delta debugging [18] are ef-
fective at reducing failing test cases for programming languages,
but rely on a quick feedback loop which tells the reducer if the

current version of the test case still triggers a bug, i.e. that it is still
interesting.

Therefore, we developed a general reduction approach similar
to hierarchical delta debugging to speed up the reduction of an
arbitrary Verilog design. Then, due to the structure of the random
test cases, an optimisation can be added to improve the efficiency
when dealing with those test cases. As the reducer is tightly coupled
with the generator, the original AST can be used to analyse the
source and reduce it further. However, the reducer still works in a
standalone manner for the supported subset of Verilog.

The main goal of the reduction algorithm is to quickly reduce the
size of the program, so that it can be analysed as soon as possible
and testing can be resumed. As synthesis and verification are time
consuming, even for small designs, it is crucial to minimise the
number of steps needed by the reduction algorithm. To achieve this,
a depth-first binary search is performed on the syntax tree, with
different levels of granularity. At every node, the current program
is checked against the synthesis tool to check that the bug is still
present.

The steps of the general reduction are detailed below. Each of
the steps will result in a binary choice which is explored in a greedy
fashion, meaning that the first option is taken until the bug is not
present anymore. The second option is only explored if the first
option would eliminate the bug from the design. If the bug is not
present there either, the reduction algorithm backtracks to the last
version that still contains the failing test case and terminates. Each
of the following steps is repeated until it cannot be applied anymore
without eliminating the bug.

(1) Half the modules, excluding the top-level module, are re-
moved from the current Verilog file. All instantiations of
modules that were removed and that are present in the left-
over modules are eliminated as well. Any wires that were
connected to the output ports in the module instantiations
are also pruned and any references to those modules in any
expressions are also removed so that no extra undefined
values are added.

(2) Half of themodule items are removed. For all the assignments
that are removed, the declaration of the variable or net that
was being assigned is also removed together with any uses
of the variable or net in any expressions in that module.

(3) The same is done for all the statements inside the always
blocks. Half of the assignments in each always block are
removed. If a conditional statement is encountered, it is
reduced by picking one of the branches, and choosing the
other if the bug is not present anymore.

(4) Finally, expressions are simplified and reduced to narrow
down on the bug. Concatenations are split into two, and
binary operators are removed and replaced by their LHS and
RHS.

By reducing the Verilog at different levels of granularity, as much
code as possible is removed at every step. As a binary choice is
made at every step, the reduction will converge to a result, which
may, however, not be optimal.

An optimisation can be carried out if the test case was generated
using Verismith, because all the internal variables and nets are con-
catenated and added to the only output. The binary search can then

Session: High-Level Synthesis and Tools FPGA ’20, February 23–25, 2020, Seaside, CA, USA

281

Tool Total test cases Failing test cases Distinct failing test cases Bug reports

Yosys 0.8 26400 7164 (27.1%) ≥ 1 0
Yosys 3333e00 51000 7224 (14.2%) ≥ 4 3
Yosys 70d0f38 (crash) 11 1 (9.09%) ≥ 1 1
Yosys 0.9 26400 611 (2.31%) ≥ 1 1
Vivado 18.2 47992 1134 (2.36%) ≥ 5 3
Vivado 18.2 (crash) 47992 566 (1.18%) 5 2
XST 14.7 47992 539 (1.12%) ≥ 2 0
Quartus Prime 19.2 80300 0 (0%) 0 0
Quartus Prime Lite 19.1 43 17 (39.5%) 1 0
Quartus Prime Lite 19.1 (No $signed) 137 0 (0%) 0 0

Icarus Verilog 10.3 26400 616 (2.33%) ≥ 1 1
Table 2: Summary of failing test cases found in each tool that was tested.

be performed only on the concatenation, while deleting all refer-
ences to variables or nets that are removed from the concatenation.
Once the wire in question is found, the standard reduction algo-
rithm can attempt to reduce it further. However, normally only one
assignment is left which can consequently be identified manually.

This optimisation only helps if the test case is processed sensi-
bly by the synthesis tool, where the netlist is produced but is not
equivalent to the input. It may fail to reduce the test cases properly
when the synthesis tool crashes, as it only operates on the output
of the module, which may not be the cause of the crash.

Remark. Another optimisation that could be performed to increase
the speed of the reduction is to use the counterexample provided by
the equivalence checker in iterations of the reducer using simula-
tion, instead of rerunning the equivalence check at every iteration.

6 EVALUATION
Verismith was run for 18000 CPU hours, testing the following syn-
thesis tools: Vivado [24], XST [25], Quartus Prime [12], Quartus
Prime Lite [12], and Yosys [23]. Our experiments were designed
to answer five questions. First, how many bugs can we detect in
various synthesis tools? Second, how does increasing the size of
the generated Verilog designs affect the efficiency of our testing
approach? Third, what is the effect of XOR-ing all the outputs of a
design into a single wire? Fourth, how does the stability of synthesis
tools change with each new release? Finally, how does our custom
Verilog test case reducer fare against an existing delta-debugging
tool called C-Reduce [20]?

Remark. Many problems were encountered when testing Quartus
Prime. The lack of documentation about the d-flip-flop used by
Quartus Prime required a lot of trial and error to get it working
properly. In addition to that, optimisations in Quartus Prime, such
as multiply-accumulate, had to be disabled as these would use
hardware of the specific FPGA that was targeted, therefore using
encrypted modules. Finally, to be able to generate a Verilog netlist
using Quartus Prime Lite, the design had to be first fitted on a real
FPGA, which meant that virtual pins had to be used to fit all the IO
ports, or the output had to be combined into one bit.

6.1 How many bugs were found?
Table 2 presents the breakdown of all the bugs found in the syn-
thesis tools. These tools were tested separately and were therefore
given different test cases. The only tools where we observed any
crashes were Vivado and Yosys. Crashes in Vivado are therefore
shown in a separate row. The crash found in Yosys was found when
briefly testing a different development version of Yosys (commit
hash 70d0f38). All the other rows of the table refer only to test cases
that mis-synthesise. The only tool where all test cases succeeded
was Quartus Prime, even after ramping up the number of test cases
to over 80,000. In a surprising contrast, we found the highest per-
centage of failures in its sister tool, Quartus Prime Lite. We only ran
a small number of test cases many were failing. Upon inspection,
we found that these failures could all be traced back to the $signed
function, which converts an expression to signed and sign extends
it if necessary. When we disabled this construction in our random
generator, we found no further failures. Alongside the various Ver-
ilog synthesis tools, we also tested a Verilog simulator called Icarus
Verilog, which was used to check the counter examples returned
by the equivalence checker. This revealed one bug in the simulator,
which was reported and fixed.

A test case failure was identified as being unique if one mini-
mal test case could not be reduced into a different minimal test
case. This often required manual intervention to go from the auto-
matically reduced test case to the minimal test case that could be
compared to the bugs that had already been identified. One caveat
regarding identifying unique mis-synthesis bugs has to be noted,
because there may be one bug in the synthesis tool that is identified
multiple times with different unique minimal test cases. For the
open source synthesis tools, this can be verified by following the
bug report, however, for commercial synthesis tools, this cannot be
checked. Unique crashes were easier to identify, as the tools dump a
stack trace that shows the exact position where the crash occurred.
Therefore, crashes at different positions could be identified as being
unique.

Only the failing test cases in Yosys can be analysed properly, as
the other failing test cases have either not been fixed, or the fix
itself has not been disclosed. Yosys was tested using three different
versions, the stable version of Yosys 0.8 before any of our bug fixes

Session: High-Level Synthesis and Tools FPGA ’20, February 23–25, 2020, Seaside, CA, USA

282

were integrated, the master branch of Yosys (commit hash 3333e00)
as it was being developed, just before our bug fixes were introduced
and finally the most recent stable release which is Yosys 0.9. The
master branch of Yosys was tested to assist the current development
of Yosys and be able to report bugs before they affect users.

All the bugs mentioned were reported and confirmed by the tool
maintainers and vendors. Most of the Yosys bugs were fixed within
the day, whereas Xilinx confirmed the bug and intend to “fix this
issue in future releases”.3 The following subsections show examples
of bugs that were found.

6.1.1 Yosys peephole optimisation.4 An example of a bug in Yosys
is in the peephole optimisation pass as shown below. A peephole op-
timisation is the replacement of a specific sequence of instructions
with a more efficient but equivalent sequence of instructions.

1 module top (y, w);
2 output y;
3 input [2:0] w;
4 assign y = 1'b1 >> (w * (3'b110));
5 endmodule

The piece of code above was identified for a peephole optimi-
sation which optimised the multiply and shift operations where
one of the operands in the multiply is constant. However, the code
above was optimised in a way that did not truncate the result of the
multiplication, meaning that if the input is w = 3’b100, y would
be set to 0 because the shift amount would be set to 6’b011000
instead of the correct value 3’b000. Therefore, the correct output
of the module should be 1 when w is set to 3’b100.

6.1.2 Yosys peephole crash.5 A crash was also found in the peep-
hole optimisation, which is shown in the code below.

1 module top(y, clk, wire1);
2 output [1:0] y;
3 input clk;
4 input [1:0] wire1;
5 reg [1:0] reg1 = 0, reg2 = 0;
6 assign y = reg2;
7 always @(posedge clk) reg1 <= wire1 == 1;
8 always @(posedge clk) reg2 <= 1 >> reg1[1:1];
9 endmodule

It will shift 1 to the right by one bit if the second bit in reg1 is
set. However, the code performing the optimisation did not check
the vector’s length before attempting to access the last element in
the vector. This therefore led to the code crashing because it tried
to index an element outside of the vector.

6.1.3 Vivado bug.6 Another bug was found which ignored the bit
selection. The code sample for that bug is slightly more complex.

3https://forums.xilinx.com/t5/Synthesis/Vivado-2019-1-Bit-selection-synthesis-
mismatch/m-p/982632#M31484
4https://github.com/YosysHQ/yosys/issues/1047
5https://github.com/YosysHQ/yosys/issues/993
6https://forums.xilinx.com/t5/Synthesis/Vivado-2019-1-Bit-selection-synthesis-
mismatch/m-p/982632#M31484

1 module top (y, clk, w0);
2 output [1:0] y;
3 input clk;
4 input [1:0] w0;
5 reg [2:0] r1 = 3'b0;
6 reg [1:0] r0 = 2'b0;
7 assign y = r1;
8 always @(posedge clk) begin
9 r0 <= 1'b1;
10 if (r0) r1 <= r0 ? w0[0:0] : 1'b0;
11 else r1 <= 3'b1;
12 end
13 endmodule

For an input of w0 = 2b’10 for two clock cycles, the final output
should be 2’d0, because the if statement is entered on the second
clock cycle and the LSB of w0 is assigned to r1, which is 1’b0.
However, with Vivado the output is 2’10 instead, meaning Vivado
does not truncate the value of the input to the LSB in w0[0:0].

6.2 How does program size affect efficiency?
The efficiency of generating different sizes of Verilog code was also
analysed to identify the optimal size that finds the most failing test
cases. This wasmeasured by conducting eight separate experiments,
each with Verismith configured to generate programs of a different
size, and each experiment given 48 hours to find as many bugs as
possible.

Figure 5a shows how the distribution of test case sizes is affected
by the size parameter given to Verismith. Each of the eight distri-
butions in the figure is labelled with the value of the size parameter
that generated it. As the size parameter becomes larger, we ob-
serve that it becomes harder to control the test case size (hence
the more spread out distributions) – this is because of the inherent
randomness in the generation algorithm.

Figure 5b compares the eight experiments by howmany test case
failures they found. The average test case size in each experiment is
displayed along the x-axis. We see that shorter programs are more
effective at triggering mis-synthesis bugs, and longer programs
are more effective at triggering crash bugs. Therefore, generating
programs that have a size of around 700 lines of code might be
optimal to find the largest variety of bugs.

Larger inputs should find more failing test cases, as more com-
binations are tried that might trigger a bug in the synthesis tool.
The designs also become much more complex as the size of the
Verilog increases. However, it is more efficient to run multiple small
random Verilog modules instead of large ones, because in the same
amount of time, many more failings test cases are found. The run
time of the synthesis and the equivalence checking is the limiting
factor, as both of these increase exponentially with the size of the
input. On the other hand, the number of crashes still increases with
the size of the input. This is because a crash normally occurs at
the start of the synthesis process, which means that the complexity
of the input does not affect the time taken to discover the crash.
Larger inputs will therefore have a greater chance of crashing the
synthesis tool.

Thus, it seems that it is more useful to generate small Verilog
modules which will synthesise and pass equivalence checking as

Session: High-Level Synthesis and Tools FPGA ’20, February 23–25, 2020, Seaside, CA, USA

283

https://github.com/YosysHQ/yosys/issues/1047
https://github.com/YosysHQ/yosys/issues/993
https://forums.xilinx.com/t5/Synthesis/Vivado-2019-1-Bit-selection-synthesis-mismatch/m-p/982632#M31484
https://forums.xilinx.com/t5/Synthesis/Vivado-2019-1-Bit-selection-synthesis-mismatch/m-p/982632#M31484

102 103
0

100

200

300

400

500
10

15

20

21
26

27 30
35

Average lines of code in generated programs

N
um

be
ro

ft
es
tc
as
es

(a) Distribution of test case sizes in each experiment.

91 181 438 792 929 1700 2110 4230
0

20

40

60

80

100

120

Average lines of code in generated programs

N
um

be
ro

ft
es
tc
as
es

Bugs found

Crashes found

(b) Efficiency of various sizes at finding failing test cases.

Figure 5: How the bug-finding efficiency varies with generated program size.

0 1,000 2,000 3,000
0

200
400
600
800

1,000

Ti
m
e
ta
ke
n
(s
)

0 1,000 2,000 3,000
Lines of code in the test case

Figure 6: Synthesis and equivalence checking time as pro-
gram size increases for test cases. Left: output combined us-
ing concatenation. Right: output combined to one bit using
unary XOR operator.

fast as possible. However, solely generating programs of the smallest
size might only result in finding the same bug repeatedly. Instead,
it is better to generate Verilog designs at around 700 lines of code
so that a larger variety of inputs can be created.

6.3 What is the effect of XOR-ing the outputs?
Figure 6 compares concatenating the output to combining the out-
put into one bit, as was mentioned in Section 3.3, by comparing
the time taken to perform the equivalence check. Synthesis time
is not displayed, because it did not change when the output was
combined into one bit or not, and scaled exponentially with size in
both cases. Equivalence checking is the limiting factor when per-
forming the random testing, because it scales exponentially but can
also take much longer depending on the test case. The horizontal
line of points at the very top are the test cases that timed out at
900 seconds. The graph on the left shows that equivalence check-
ing time mostly scales exponentially with the size of the test case,
with around 5% of test cases failing. However, when the output is
combined into one bit, which is shown by the graph on the right,

the equivalence checking time scales much worse as the lines of
code of the test cases increase, with around 29% of test cases failing
overall. The time taken increases in a nearly vertical line, meaning
even small test cases timeout most of the time. The reason for this
is that the circuit generated by the unary XOR operator takes a
long time to verify, as all possible paths are explored.

Reducing the output to one bit increases the time to perform the
equivalence check dramatically, making it impossible to generate
programs of more than 500 lines and check for bugs that were
introduced. Therefore, the output should not be combined unless it
is absolutely necessary.

6.4 How stable are synthesis tools?
By fuzzing different versions of synthesis tools, the general stability
of the tools can be observed. One might expect newer versions of
the tool either to have fewer bugs, as they are reported and fixed, or
to have more bugs, as new features are added. In total, 837 test cases
were run through the four different versions of Vivado, however,
134 test cases timed out and were therefore disregarded. Figure 7
shows how many test cases produced failures in each version of
Vivado. Each horizontal ribbon represents a group of test cases that
produced failures in the same tools and the larger the ribbon, the
more test cases followed the same trajectory.

Figure 7 shows that Vivado 2016.1 and 2016.2 have exactly the
same test case failures. From 2016.2 to 2017.4, the bugs originating
from one group of test cases were fixed, but two different groups
of test cases starts to fail. The total number of failing test cases is
also higher in 2017.4 than in previous versions. Finally, two groups
of test cases are fixed for version 2018.2, but another group of test
cases start to fail, which is the largest proportion of test cases in the
diagram. There is one group that stays constant in all the versions
of Vivado comprising 15 test cases, which are likely due to failures
that have not been found or reported yet.

Session: High-Level Synthesis and Tools FPGA ’20, February 23–25, 2020, Seaside, CA, USA

284

2016.1 2016.2 2017.4 2018.2

17

15

11

622 22

28

43

Vivado version

Figure 7: Tracking the same set of test cases across four ver-
sions of Vivado. Thewhite rectangles indicate the total num-
ber of failing test cases per version. Test cases that fail in the
same versions are grouped into a ribbon, and each ribbon is
labelled with the number of test cases it contains. The in-
terleaving of ribbons shows how bugs may have been intro-
duced or fixed in each version.

6.5 How effective is our reducer?
To test the efficiency of the test case reducer that was implemented
in Verismith, it was compared against an existing test case reducer
for C/C++, called C-Reduce [20]. C-Reduce is a general reducer con-
taining various passes that perform different reduction algorithms.
As it is tailored to reduce C-like languages, C-Reduce is much less
effective at reducing unknown languages, because it cannot anal-
yse and perform reductions on the AST. However, it can still apply
other passes which are independent of the input language.

C-Reduce has a notion of test case validity and checks for unde-
fined and unspecified behaviour when reducing C so that it can be
avoided. This is necessary, as the reducer might otherwise discard
the original bug and reduce the undefined behaviour instead. To
be able to compare C-Reduce to Verismith, it requires a similar
notion of how to avoid undefined behaviour when reducing Verilog.
We added a few context-free heuristics to the script that check if
the test case is still interesting, i.e. that the bug is still present. The
heuristics are the following:

(1) Check that it can be parsed by Verismith, to guarantee that
the test case is still in the supported subset of Verilog and is
syntactically valid.

(2) Apply context-free heuristics, such as requiring all registers
to be initialised.

(3) Check that the synthesis tool does not output any warning
to catch any other errors that may have been introduced.

C-Reduce was tested against our implementation of the reduc-
tion algorithm using 30 randomly selected test cases that fail in
Yosys. C-Reduce was run with a default configuration and all the
C/C++ passes turned off. As per the default, C-Reduce was run in
parallel on four cores. Verismith, being a single-threaded design,
ran on only one core. Figure 8 shows the results of the comparison,
differentiating between crashes and mis-synthesis bugs. Six out of
the 30 test cases were reduced to contain only undefined behaviour

101 102

100

101

102

103

104

Final size of reduced test case (lines of code)

Ti
m
e
ta
ke
n
fo
rr
ed
uc
tio

n
(s
)

Verismith: mis-synthesis C-Reduce: mis-synthesis
Verismith: crash C-Reduce: crash

Figure 8: Comparing the effectiveness of test case reduction
by Verismith and by C-Reduce using 30 randomly selected
test cases that fail in Yosys. Only 24 test cases were success-
fully reduced by C-Reduce, whereas Verismith reduced all
30. Both axes use a logarithmic scale. Points towards the bot-
tom left are favoured.

using C-Reduce and discarded the original cause of the discrepancy
between the netlist and the design. This was often because inputs
to module instantiations were removed, which led to undefined
values in those inputs. To mitigate this, context-sensitive heuristics
would be needed, to make sure the right amount of inputs is present
in a module instantiation. In addition to that, because C-Reduce
does not know the Verilog syntax, most of the minimal test cases
were unreadable and were therefore passed through Verismith to
compare the final sizes properly. Figure 8 allows us to draw the
following conclusions:

Verismith is much faster than C-Reduce. The average time taken
by Verismith is 119s, while the average time taken by C-Reduce is
2640s (note that the logarithmic scale on the y-axis de-emphasises
this discrepancy). This is expected, as Verismith performs a strict
binary choice at every pass, and does not consider additional al-
ternatives, so that the number of synthesis runs is minimised. Ad-
ditionally, Verismith has access to the original AST and performs
semantically valid reductions that will not introduce undefined
behaviour.

Verismith reduces mis-synthesis bugs further than C-Reduce. The
median size of the reduced test case for Verismith is 11 lines,
whereas for C-Reduce this is 61 lines. This can be explained by
the fact that Verismith has access to the AST and can therefore
perform more semantically valid transformations. However, the
average number of lines reduced is about the same for both tools, as
there are cases where Verismith does not find the optimal reduction.

C-Reduce reduces crash bugs further than Verismith. Even though
Verismith is faster than C-Reduce in most cases, C-Reduce seems
to be better at reducing crashes, taking only slightly longer than
Verismith but achieving a smaller reduced test case in general.

Session: High-Level Synthesis and Tools FPGA ’20, February 23–25, 2020, Seaside, CA, USA

285

This is because Verismith always tries to perform semantically
valid transformations, which is not relevant when reducing crashes.
Checking that the Verilog is valid is not important as long as the
tool still crashes with the original error message.

7 RELATEDWORK
Random Verilog generation. VlogHammer [22] is also a Verilog

fuzzer that targets the major commercial synthesis tools, as well as
several simulators. It has found around 75 bugs to date which have
been reported to the tool vendors. In contrast to our tool, VLogHam-
mer does not generate programs with multiple modules and it does
not support behavioural Verilog (e.g. always blocks). Whereas our
tool only generates deterministic Verilog (which we have argued is
the most important part of the language), VLogHammer generates
nondeterministic Verilog, and requires an additional simulation
step to avoid false positives. Finally, VLogHammer does not per-
form test case reduction, instead only generating small modules
that can be analysed manually if they fail.

Another random Verilog generator is VERGEN [19], which gen-
erates behavioural Verilog by randomly combining high-level logic
blocks such as state machines, MUXes and shift registers. However,
because it generates these predefined constructs, it produces well-
behaved code which is unlikely to test many different combinations
of Verilog constructs.

American Fuzzy Lop (AFL) [27] is a general-purpose fuzzer for
binaries and uses instrumentation to guide the mutation of existing
test cases. However, given that synthesis tools are highly complex
programs with a large number of different states, it can be difficult
to identify the correct set of inputs to enable the fuzzer to find a bug.
In addition to that, the fuzzer has no notion of correct behaviour,
and can therefore only detect crashes. We ran AFL on Yosys for 144
CPU hours and did not find a crash.

Random generation and differential testing has also successfully
been applied to fuzz various OpenCL implementations [14], includ-
ing the Intel FPGA SDK for OpenCL [11].

Equivalence checking. Differential testing [17] is the standard
method for checking compiler correctness, by passing the input to
two or more different compilers for the same language and checking
if the output behaves in the same way. If one achieves a different
result, then it is assumed that there must be a bug. Csmith [26]
uses this technique to check if the output of different C compilers
is correct. However, as the output of synthesis tools is Verilog, it
can be checked formally for equivalence with the initial design to
ensure that no bugs were present in the synthesis tool.

Modern commercial logical equivalence checkers, such as Con-
formal [4] could also solve the problem of comparing netlists to the
original design, as they are often built with that use case in mind.

Test case reduction. Test case reduction is usually performed by
a process called delta-debugging [28] which splits the source code
into parts using simple lexer rules and tries to remove as many
parts as possible. C-Reduce [20] is an example of an advanced
reduction algorithm for C-like languages that makes use of parallel
executions of different subsets of the test case to identify one that
is still interesting, which is reduced further.

Verified synthesis. There has also beenwork on verified synthesis,
such as PBS [1], written in ML and verified mechanically using
Nuprl [6], or Π-ware [8], which is a high level HDL in Agda where
the synthesis process to gates is formally proven. Such systems
should, in theory, withstand our random testing. However, it is an
enormous effort to build a fully verified synthesis tool that offers
comparable performance to state-of-the-art tools. Moreover, there
could still be bugs in the non-verified parts of these tools – as was
found to be the case with the CompCert [13] verified C compiler
when tested using Csmith [26].

8 CONCLUSION AND FURTHERWORK
This paper introduced a method for behavioural Verilog generation
and Verilog reduction, which was implemented in an open-source
tool called Verismith. This tool successfully found and reported
a total of eleven bugs in Yosys, Vivado and Icarus Verilog, which
are now either fixed or confirmed and scheduled to be fixed in
upcoming releases.

The main limitation of Verismith is that it cannot produce a de-
sign that contains undefined values, meaning no bugs can be found
that are caused by them. Another limitation is that implementations
for all the FPGA primitives are needed for the different tools that
are used. Finally, only synthesis tools that can output Verilog are
supported, which may limit which synthesis tools can be tested.

Further work could be done on supporting a larger subset of Ver-
ilog, which improves the testing of the synthesis tools. In addition
to that, undefined values could also be supported, which would
further increase the variety of test cases that could be generated.
Undefined values could be introduced in a controlled manner to
support this, as Verismith already has a notion of determinism. This
would allow for control over how much of the output should be un-
defined, which would reduce the risk of undefined values masking
possible bugs and affecting a large proportion of the output.

It is worth asking whether the bugs we have found using Veri-
smith really matter, or whether they would only be triggered by
code patterns that are unlikely to appear in production code. This is
hard to answer definitively, but it is worth noting that one member
of the Xilinx user community remarked that the bug we found in
Vivado “looks to me to be a rather critical bug”.7 In general it does
seem like these tools cannot be completely trusted, because they
can generate a netlist that is not equivalent to the original or even
crash given correct and deterministic Verilog.

It is our hope that tools like Verismith can not only be valuable
to designers of logic synthesis tools as a way to catch more bugs,
but can also provide designers with a safety net that gives them the
confidence to implement ever more ambitious optimisations.

ACKNOWLEDGMENTS
We acknowledge financial support of a PhD studentship from the Re-
search Institute on Verified Trustworthy Software Systems (VeTSS),
which is funded by the National Cyber Security Centre (NCSC),
and the EPSRC IRIS programme grant (EP/R006865/1). We thank
Alastair Donaldson, Eric Eide, Martin Ferianc, Brent Nelson, and
the FPGA ’20 reviewers for valuable suggestions.

7https://forums.xilinx.com/t5/Synthesis/Vivado-2019-1-Bit-selection-synthesis-
mismatch/m-p/982632#M31484

Session: High-Level Synthesis and Tools FPGA ’20, February 23–25, 2020, Seaside, CA, USA

286

REFERENCES
[1] M. Aagaard and M. Leeser. 1991. A formally verified system for logic synthesis.

In [1991 Proceedings] IEEE International Conference on Computer Design: VLSI in
Computers and Processors. 346–350. https://doi.org/10.1109/ICCD.1991.139915

[2] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2017. The SMT-LIB Standard:
Version 2.6. Technical Report. Department of Computer Science, The University
of Iowa.

[3] Robert Brayton and Alan Mishchenko. 2010. ABC: An academic industrial-
strength verification tool. In Computer Aided Verification, Tayssir Touili, Byron
Cook, and Paul Jackson (Eds.). Springer, Berlin, Heidelberg, 24–40.

[4] Cadence. 2019. Conformal Equivalence Checker. https://bit.ly/2mkp0aa
[5] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chli-

pala, and Arvind. 2017. Kami: a Platform for High-Level Parametric Hardware
Specification and Its Modular Verification. Proc. ACM Program. Lang. 1, ICFP,
Article 24 (Aug. 2017), 30 pages. https://doi.org/10.1145/3110268

[6] Robert L. Constable et al. 1986. Implementing Mathematics with The Nuprl Proof
Development System.

[7] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer, Berlin, Heidelberg, 337–340.

[8] João Paulo Pizani Flor, Wouter Swierstra, and Yorick Sijsling. 2018. Pi-Ware:
Hardware Description and Verification in Agda. In 21st International Conference
on Types for Proofs and Programs (TYPES 2015) (Leibniz International Proceedings
in Informatics (LIPIcs)), Tarmo Uustalu (Ed.), Vol. 69. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 9:1–9:27. https://doi.org/10.4230/
LIPIcs.TYPES.2015.9

[9] Yann Herklotz and John Wickerson. 2019. Verismith: FPGA ’20 Artifact. https:
//doi.org/10.5281/zenodo.3559802

[10] IEEE Std 1364.1 2005. IEEE Standard for Verilog Register Transfer Level Synthesis.
Standard. 1–116 pages. https://doi.org/10.1109/IEEESTD.2005.339572

[11] Intel. 2019. Intel FPGA SDK for OpenCL software technology. https://intel.ly/
2WXoTj8

[12] Intel. 2019. Intel Quartus. https://intel.ly/2m7wbCs
[13] Xavier Leroy. 2006. Formal Certification of a Compiler Back-end or: Programming

a Compiler with a Proof Assistant. In Conference Record of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’06). ACM,
New York, NY, USA, 42–54. https://doi.org/10.1145/1111037.1111042

[14] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.
2015. Many-core Compiler Fuzzing. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’15).
ACM, New York, NY, USA, 65–76. https://doi.org/10.1145/2737924.2737986

[15] Andreas Lööw, Ramana Kumar, Yong Kiam Tan, Magnus O. Myreen, Michael
Norrish, Oskar Abrahamsson, and Anthony Fox. 2019. Verified Compilation
on a Verified Processor. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’19). ACM, New York,
NY, USA, 1041–1053. https://doi.org/10.1145/3314221.3314622

[16] WilliamMcDonald and Janny Liao. 2006. Logic Equivalence Checking has Arrived
for FPGA Developers. In Design and Verification Conference (DVCon).

[17] William M McKeeman. 1998. Differential Testing for Software. Digital Technical
Journal 10, 1 (1998), 100–107.

[18] Ghassan Misherghi and Zhendong Su. 2006. HDD: Hierarchical Delta Debugging.
In Proceedings of the 28th International Conference on Software Engineering (ICSE
’06). ACM, New York, NY, USA, 142–151. https://doi.org/10.1145/1134285.1134307

[19] Boris Ratchev, Mike Hutton, Gregg Baeckler, and Babette van Antwerpen. 2003.
Verifying the Correctness of FPGA Logic Synthesis Algorithms. In Proceedings of
the 2003 ACM/SIGDA Eleventh International Symposium on Field Programmable
Gate Arrays (FPGA ’03). ACM, New York, NY, USA, 127–135. https://doi.org/10.
1145/611817.611837

[20] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang.
2012. Test-case Reduction for C Compiler Bugs. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’12). ACM, New York, NY, USA, 335–346. https://doi.org/10.1145/2254064.2254104

[21] Stephen Williams. 2019. Icarus Verilog. http://iverilog.icarus.com/
[22] Clifford Wolf. 2019. VlogHammer. https://bit.ly/2kCxjO3
[23] Clifford Wolf. 2019. Yosys Open SYnthesis Suite. https://bit.ly/2kAXg0q
[24] Xilinx. 2019. Vivado Design Suite. https://bit.ly/2wZAmld
[25] Xilinx. 2019. XST Synthesis Overview. https://bit.ly/2lGtkjL
[26] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-

derstanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’11).
ACM, New York, NY, USA, 283–294. https://doi.org/10.1145/1993498.1993532

[27] Michal Zalewski. 2015. American fuzzy lop. http://lcamtuf.coredump.cx/afl/
[28] A. Zeller and R. Hildebrandt. 2002. Simplifying and Isolating Failure-Inducing

Input. IEEE Transactions on Software Engineering 28, 2 (Feb 2002), 183–200.
https://doi.org/10.1109/32.988498

Session: High-Level Synthesis and Tools FPGA ’20, February 23–25, 2020, Seaside, CA, USA

287

https://doi.org/10.1109/ICCD.1991.139915
https://bit.ly/2mkp0aa
https://doi.org/10.1145/3110268
https://doi.org/10.4230/LIPIcs.TYPES.2015.9
https://doi.org/10.4230/LIPIcs.TYPES.2015.9
https://doi.org/10.5281/zenodo.3559802
https://doi.org/10.5281/zenodo.3559802
https://doi.org/10.1109/IEEESTD.2005.339572
https://intel.ly/2WXoTj8
https://intel.ly/2WXoTj8
https://intel.ly/2m7wbCs
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/3314221.3314622
https://doi.org/10.1145/1134285.1134307
https://doi.org/10.1145/611817.611837
https://doi.org/10.1145/611817.611837
https://doi.org/10.1145/2254064.2254104
http://iverilog.icarus.com/
https://bit.ly/2kCxjO3
https://bit.ly/2kAXg0q
https://bit.ly/2wZAmld
https://bit.ly/2lGtkjL
https://doi.org/10.1145/1993498.1993532
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1109/32.988498

	Abstract
	1 Introduction
	2 Overview of Verismith
	3 Generating Verilog
	3.1 Target language
	3.2 Properties of generated programs
	3.3 Generation algorithm

	4 Equivalence checking
	5 Test case reduction
	6 Evaluation
	6.1 How many bugs were found?
	6.2 How does program size affect efficiency?
	6.3 What is the effect of XOR-ing the outputs?
	6.4 How stable are synthesis tools?
	6.5 How effective is our reducer?

	7 Related work
	8 Conclusion and further work
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 352.83, 736.19 Width 222.29 Height 24.59 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 352.8272 736.1908 222.2906 24.5939

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 11
 0
 1

 1

 HistoryList_V1
 qi2base

