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What is High-Level Synthesis?
High-Level Synthesis (HLS)
Conversion from an algorithmic, sequential description in C to a
parallel hardware design in Verilog.
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What is High-Level Synthesis?
High-Level Synthesis (HLS)
Conversion from an algorithmic, sequential description in C to a
parallel hardware design in Verilog.

Unreliability of HLS
We found that HLS tools had incorrect output for 1.5% of simple,
random C code.1

1 Yann Herklotz, Zewei Du, Nadesh Ramanathan, and John Wickerson. An empirical study of the
reliability of high-level synthesis tools. In 29th IEEE Annual Int. Symp. on FCCM, 2021.
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Solution: Formally Verified HLS

Clight ... CminorSel 3AC LTL aarch64
x86
...

...

HTL Verilog

CompCert

Vericert
RAM insertion

• Build a verified HLS tool on top of CompCert called Vericert.

• Currently only generates sequential hardware.
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Adding Instruction-Level Parallelism

Clight ... CminorSel 3AC LTL aarch64
x86
...

...

HTLRTLBlock RTLPar RTLParFU Verilog

CompCert

Vericert
scheduling pipelining

if-conversion

Add instruction level parallelism using predicated instructions in
basic blocks.
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Example of Instruction Scheduling
r2 = r1 + r4;
if p1: r1 = r2 + r4;
if !p1&&!p2: r3 = r1 * r1;
if p1: p3 = r2 == r3;

r2 = r1 + r4
  || if !p1&&!p2: r3 = r1 * r1;
if p1: r1 = r2 + r4;
  || if (p1) p3 = r2 == r3;
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Naïve Implementation
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RTLBlock and RTLPar Syntax
ℬ ::= slist ℐ 𝒫 ::= slist (plist (slist ℐ ))
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RTLBlock and RTLPar Syntax
ℬ ::= slist ℐ 𝒫 ::= slist (plist (slist ℐ ))

clk

r1 if(p1) r2 + r4

r2 r1 + r4

r3 if(!p2 && !p1) r1 * r1 if(p2) r1 * r4 || if(!p2) r3 * r3
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RTLBlock and RTLPar Syntax
ℬ ::= slist ℐ 𝒫 ::= slist (plist (slist ℐ ))

ℐ ::= nop
| if P: 𝑟 = 𝑟 + 𝑟 | ...
| if P: 𝑟 = 𝑀[𝑎]
| if P: 𝑀[𝑎] = 𝑟
| if P: 𝑝 = 𝑟 == 𝑟 | ...
| if P: exit 𝒞
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Translation Validation in CompCert

RTLBlock RTLPar
scheduling

Abstr Abstr

symbolic executionsymbolic execution

equivalence check

∼

∼ ∼
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Checker Implementation

• Assuming we have sequential and parallel code we want to compare.

• Symbolically execute the sequential and parallel code.

• Describe an equivalence checker for the results of symbolic
execution.

𝑅 : 𝑟 | 𝑝 | M | Exit

Σ : 𝑅 -> (𝑅 -> val) -> val

SExec : ℬ -> Σ check : Σ -> Σ -> bool
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Example Execution
r2 = r1 + r4;
if p1: r1 = r2 + r4;
if !p1&&!p2: r3 = r1 * r1;
if p1: p3 = r2 == r3;

r1 ↦ (p10 → (r10+r40)+r40)
∧ (¬p10 → r10)

r2 ↦ r10+r40

r3 ↦

(¬p10 ∧ ¬p20) →

( (p10 → (r10+r40)+r40)
∧ (¬p10 → r10)

) * ...)

∧ ((p10 ∨ p20) → r30)

p3 ↦ (¬p10 → p30)
∧ (p10 → (r10+r40 == ...))
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A Few Problems Arise

• Very recursive structure of guarded expressions.

• Representation is similar to SMT formulas with atoms.

• Currently atoms can contain formulas too.

𝑃 ::= p0 | 𝑃 ∨ 𝑃 | 𝑃 + 𝑃 | 𝑃 == 𝑃 | ...
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Fixing Symbolic Representation
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Execution With Flatter Representation
r2 = r1 + r4;
if p1: r1 = r2 + r4;
if !p1&&!p2: r3 = r1 * r1;
if p1: p3 = r2 == r3;

r1 ↦ {
(r10+r40)+r40, if p10

r10, if ¬p10

r2 ↦ r10+r40

r3 ↦ {
r10*r10, if ¬p10 ∧ ¬p10 ∧ ¬p20

...

p3 ↦ (¬p10 → p30)
∧ ((p10 ∨ p20) → ((r10+r40)+r40 == r30))
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As a Grammar

𝐺 ::= [(𝑃, 𝑒)]

𝑃 ::= p0 | 𝑃 ∨ 𝑃 | 𝑒 == 𝑒 | ...

𝑒 ::= r0 | 𝑒 + 𝑒 | 𝑒 * 𝑒 | 𝑒[𝑒] | ...

𝐹 ::= 𝑟 ↦ 𝐺 ; M ↦ 𝐺 ; 𝑝 ↦ 𝑃 ; Exit ↦ [(𝑃, 𝒞 )]
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Defining the Equivalence Check
We have syntactic equality for expressions implying same behaviour:

(𝑒, 𝜎ℬ) ⇓ 𝑣 𝜎ℬ ∼ 𝜎𝒫

(𝑒, 𝜎𝒫 ) ⇓ 𝑣

Now to compare guarded expressions 𝐺ℬ = [(𝑃ℬ, 𝑒ℬ), ... ] and 𝐺𝒫 =
[(𝑃𝒫 , 𝑒𝒫 ), ... ], we can use a verified SAT solver:

(𝑃ℬ → 𝑒ℬ ∧ ...)
⟺

(𝑃𝒫 → 𝑒𝒫 ∧ ...)
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On Predicate Evaluation
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Predicate Evaluation Can Block

⊥ ⟺ (⊥ ∧ x == y)

• SAT solver will say equivalent.

• x == y can block and therefore might not behave the same.

• For example when doing pointer equality with invalid pointers.

• This requires us to define a well-formedness condition for
predicates.
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Well-Formedness of Predicates

𝑃1 ⟺ 𝑃2

• Check that predicate from the output of the schedule only contains
executable atoms.

• 𝛼(𝑃) retrieves the atoms of 𝑃.

𝛼(𝑃1) ⊇ 𝛼(𝑃2)

𝑃2 will be executable if 𝑃1 is executable as well.
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Results and Conclusion
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Conclusion

• SAT solver can be used to write a translation validation pass in
CompCert and to help prove the forward simulation.

• Performance is ∼1.8× better than base Vericert, now around 2×
slower than optimised LegUp.

• Verified most passes (if-conversion, basic block generation,
symbolic execution soundness).

• Currently finishing equivalence checking proof.

github.com/ymherklotz/vericert
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Thank you!
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Solution: Formally Verified HLS
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HTL Verilog

CompCert

Vericert
RAM insertion

• Build a verified HLS tool on top of CompCert.

• Currently only generates sequential hardware.
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Predicate Evaluation Can Block

⊥ ⟺ (⊥ ∧ x == y)

• SAT solver will say equivalent.

• x == y can block and therefore might not behave the same.

• For example when doing pointer equality with invalid pointers.

• This requires us to define a well-formedness condition for
predicates.
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