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What 1s High-Level Synthesis?

High-Level Synthesis (HLS)

Conversion from an algorithmic, sequential description in C to a
parallel hardware design in

Unreliability of HLS
We found that HLS tools had incorrect output for 1.5% of simple,
random C code.!

! Yann Herklotz, Zewei Du, Nadesh Ramanathan, and John Wickerson. An empirical study of the
reliability of high-level synthesis tools. In 29th IEEE Annual Int. Symp. on FCCM, 2021.
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Solution: Formally Verified HLS

CompCert

f x86
Clight — -* — CminorSel — 3AC —— LTL =

aarché64
l

Vericert HTL ——— Verilog
RAM insertion Q

e Build a verified HLS tool on top of CompCert called

e C(Currently only generates sequential hardware.
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Adding Instruction-Level Parallelism

CompCert

4/;?: x86
Clight — - — Cmiiiiiii;::j,3AC-———» LTL »

aarch64

Vericert RTLBlock —— RTLPar —— RTLParFU —— HTL — Verilog

scheduling pipelining

if-conversion

Add instruction level parallelism using predicated instructions in
basic blocks.
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Example of Instruction Scheduling e fierrtin
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r2 = rl + r4; r2 = rl + r4 Representation
if pl: 1l = 12 + 14; || if !'pl1&&!p2: 13 = 1l * rl;

1f 'pl&&lp2: 13 = rl * rl; 1f pl: 1l = 12 + ré4; On Predicate
if pl: p3 = 12 == 13; || if (pl) p3 = 12 == r3; Evaluation
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RTLBlock and RTLPar Syntax

B

::= slist ¥

P

::= slist (plist (slist 7))
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RTLBlock and RTLPar Syntax

P 1= slist ¥

clk J

::= slist (plist (slist 7))

r1

if(p1) r2 + r4

r2 :X r1+r4

if(Ip2 && Ip1) r1 * r1
r3 :x (P

if(p2) r1 * r4 || if(\p2) r3 * r3
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RTLBlock and RTLPar Syntax

B

::= slist ¥

54

nop
if P:
if P:
if P:
if P:
if P:

P i:= slist (plist (slist .7))

r=r +r | e

r = Mla]

Mla] =r
p=r==r | .

exit €
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Translation Validation in CompCert

RTLBlock

scheduling

symbolic execution y

__________
- -
- ~~

Abstr

equivalence check

RTLPar

symbolic execution

Abstr
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Checker Implementation

Assuming we have sequential and parallel code we want to compare.

Describe an
execution.

SExec :

the sequential and parallel code.

DI

B ->

for the results of symbolic

R:r| pl M| Exit
R -> (R -> val) -> val

check : > -> > -> bool
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Example Execution

r2 = rl + r4;

if pl: rl = r2 + ré;

1f 'pl&&lp2: 13 = rl * rl;
1f pl: p3 = 12 == 13;

_, (pl, — (11 +rd)+rh,)

1
A (Apl, — 1)

2 —

0 0

(—=pl, A —p2) —

30 <(p10—>(0 ) o)) )

A (=pl, — 1l)
A ((pl,vp2) — 13)

(=pl, — p3)

B3 (L, — (1,418, == -))
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A Few Problems Arise

Very

structure of guarded expressions.

Representation is similar to SMT

Currently

can contain too.

P::=p | PvP|P+P|P

with

P |
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Fixing Symbolic Representation
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Execution With Flatter Representation T

Fixing Symbolic

r2 = rl + I4, ] Representation
if pl: 1l = 12 + r4; (r1,+r4)+1d, 1f pl,

] ’ rl —

1f 'pl&&lp2: 13 = rl * rl; _ On Predicate
_ rl, if —pl

if pl: p3 = 12 == I3; 0 Evaluation

r2 — 1l +r4,

Results and

Conclusion

rlxrl, if —pl A-pl, A—p2,
13 —

(—=pl, — p3,)

p3 —
A ((pL, v p2,) — ((x1,+14)) +14, == 13)))



Naive Implementation
As a Grammar

Fixing Symbolic

Representation
G ::= [(P, )]
On Predicate
P::=p, | PvP|le==¢] - Evaluation
e:i=1, |e+el|lexe] ele] | - Results and
Conclusion

F:i=r—G;M—>G; p— P ; Exit— [(P, ¥)]



Defining the Equivalence Check

We have syntactic equality for expressions implying same behaviour:

(6,62%) U'\) Og ~ Oy

(e,a,) | v
Now to compare G,=[(P,e,), ] and G, =
[(P,e,),~ ], we can use a SAT solver:

(l{% — €y /\"')
=

(13¢ — €, A "')
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On Predicate Evaluation
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Predicate Evaluation Can Block

1 < (LA )

e SAT solver will say equivalent.

. can block and therefore might not behave the same.
e For example when doing pointer equality with pointers.
e This requires us to define a condition for

predicates.
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Well-Formedness of Predicates

e Check that predicate from the output of the schedule only contains

P < P

1 2

e «a(P) retrieves the atoms of P.

P, will be executable if

a(P) 2 a(P)

P is executable as well.

1
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Results and Conclusion
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Naive Implementation

Vericert speed comparison
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Conclusion

. can be used to write a pass in
CompCert and to help prove the

e Performance is ~1.8x better than base Vericert, now around 2x
slower than optimised LegUp.

e Verified most passes (if-conversion, basic block generation,
symbolic execution soundness).

e Currently finishing equivalence checking proof.

github.com/ymherklotz/vericert
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https://github.com/ymherklotz/vericert

Thank you!

Solution: Formally Verified HLS
CompCert
? E x86
Clight — == — CminorSel — 3AC —— LTL —— == aarch64

Vericert HTL ——— Verilog
RAM insertiano

e Build a verified HLS tool on top of CompCert.

e Currently only generates sequential hardware.

Defining the Equivalence Check

We have syntactic equality for expressions implying same behaviour:

o)lv o,~0,

(eo,) v
Now to compare G,=[(P,e,),~] and G, =
[(P,.e,),+]1, we can use a SAT solver:
(P, —e,n )
—

P, —>e,n-)
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A Few Problems Arise

¢ Very structure of guarded expressions.
¢ Representation is similar to SMT with
e Currently can contain too.

P:i=p, | PVP|P+P|P==P| -

Predicate Evaluation Can Block

1L = (LA )

e SAT solver will say equivalent.

. can block and therefore might not behave the same.

¢ For example when doing pointer equality with

¢ This requires us to define a condition for

predicates.
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