On Formalising Predicated Execution
and Predicate-Aware Scheduling

Yann Herklotz and John Wickerson

Imperial College London

What 1s High-Level Synthesis?

High-Level Synthesis (HLS)

Conversion from an algorithmic, sequential description in
parallel hardware design in

to a

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

What 1s High-Level Synthesis?

High-Level Synthesis (HLS)

Conversion from an algorithmic, sequential description in C to a
parallel hardware design in

Unreliability of HLS
We found that HLS tools had incorrect output for 1.5% of simple,
random C code.!

! Yann Herklotz, Zewei Du, Nadesh Ramanathan, and John Wickerson. An empirical study of the
reliability of high-level synthesis tools. In 29th IEEE Annual Int. Symp. on FCCM, 2021.

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Solution: Formally Verified HLS

CompCert

f x86
Clight — -* — CminorSel — 3AC —— LTL =

aarché64
l

Vericert HTL ——— Verilog
RAM insertion Q

e Build a verified HLS tool on top of CompCert called

e C(Currently only generates sequential hardware.

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Adding Instruction-Level Parallelism

CompCert

4/;?: x86
Clight — - — Cmiiiiiii;::j,3AC-———» LTL »

aarch64

Vericert RTLBlock —— RTLPar —— RTLParFU —— HTL — Verilog

scheduling pipelining

if-conversion

Add instruction level parallelism using predicated instructions in
basic blocks.

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Example of Instruction Scheduling e fierrtin

Fixing Symbolic

r2 = rl + r4; r2 = rl + r4 Representation
if pl: 1l = 12 + 14; || if !'pl1&&!p2: 13 = 1l * rl;

1f 'pl&&lp2: 13 = rl * rl; 1f pl: 1l = 12 + ré4; On Predicate
if pl: p3 = 12 == 13; || if (pl) p3 = 12 == r3; Evaluation

Results and

Conclusion

Naive Implementation

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

RTLBlock and RTLPar Syntax

B

::= slist ¥

P

::= slist (plist (slist 7))

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

RTLBlock and RTLPar Syntax

P 1= slist ¥

clk J

::= slist (plist (slist 7))

r1

if(p1) r2 + r4

r2 :X r1+r4

if(Ip2 && Ip1) r1 * r1
r3 :x (P

if(p2) r1 * r4 || if(\p2) r3 * r3

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

RTLBlock and RTLPar Syntax

B

::= slist ¥

54

nop
if P:
if P:
if P:
if P:
if P:

P i:= slist (plist (slist .7))

r=r +r | e

r = Mla]

Mla] =r
p=r==r | .

exit €

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Translation Validation in CompCert

RTLBlock

scheduling

symbolic execution y

- -
- ~~

Abstr

equivalence check

RTLPar

symbolic execution

Abstr

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Checker Implementation

Assuming we have sequential and parallel code we want to compare.

Describe an
execution.

SExec :

the sequential and parallel code.

DI

B ->

for the results of symbolic

R:r| pl M| Exit
R -> (R -> val) -> val

check : > -> > -> bool

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Example Execution

r2 = rl + r4;

if pl: rl = r2 + ré;

1f 'pl&&lp2: 13 = rl * rl;
1f pl: p3 = 12 == 13;

_, (pl, — (11 +rd)+rh,)

1
A (Apl, — 1)

2 —

0 0

(—=pl, A —p2) —

30 <(p10—>(0) o)))

A (=pl, — 1l)
A ((pl,vp2) — 13)

(=pl, — p3)

B3 (L, — (1,418, == -))

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

A Few Problems Arise

Very

structure of guarded expressions.

Representation is similar to SMT

Currently

can contain too.

P::=p | PvP|P+P|P

with

P |

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Fixing Symbolic Representation

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Execution With Flatter Representation T

Fixing Symbolic

r2 = rl + I4,] Representation
if pl: 1l = 12 + r4; (r1,+r4)+1d, 1f pl,

] ’ rl —

1f 'pl&&lp2: 13 = rl * rl; _ On Predicate
_ rl, if —pl

if pl: p3 = 12 == I3; 0 Evaluation

r2 — 1l +r4,

Results and

Conclusion

rlxrl, if —pl A-pl, A—p2,
13 —

(—=pl, — p3,)

p3 —
A ((pL, v p2,) — ((x1,+14)) +14, == 13)))

Naive Implementation
As a Grammar

Fixing Symbolic

Representation
G ::= [(P,)]
On Predicate
P::=p, | PvP|le==¢] - Evaluation
e:i=1, |e+el|lexe] ele] | - Results and
Conclusion

F:i=r—G;M—>G; p— P ; Exit— [(P, ¥)]

Defining the Equivalence Check

We have syntactic equality for expressions implying same behaviour:

(6,62%) U'\) Og ~ Oy

(e,a,) | v
Now to compare G,=[(P,e,),] and G, =
[(P,e,),~], we can use a SAT solver:

(l{% — €y /\"')
=

(13¢ — €, A "')

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

On Predicate Evaluation

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Predicate Evaluation Can Block

1 < (LA)

e SAT solver will say equivalent.

. can block and therefore might not behave the same.
e For example when doing pointer equality with pointers.
e This requires us to define a condition for

predicates.

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Well-Formedness of Predicates

e Check that predicate from the output of the schedule only contains

P < P

1 2

e «a(P) retrieves the atoms of P.

P, will be executable if

a(P) 2 a(P)

P is executable as well.

1

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Results and Conclusion

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Naive Implementation

Vericert speed comparison

o
= f =
— o
o - [}
=) -+ -+ =]
= [+ @ [= c f=
> -+ o o [+ o
() = = == =
[<}] =] -+ (%) (2]
0o (72} [} @ -+ =]
= (<)) - = — —
— ~ a. — =] o
> o @ (72} f=
=~ [} f= > [} o
(' (=4 o (NN] o (&)
_ 1
-
L o
- Q
>
=

18019/ 0} SAlIB|a] BWI) UOINOaX]

uelpaw
iy
AJOSL}

WIAs

NZJIAs
WWwAs
pg-1opies
AOUISSNU
1w
dwopn|

n|
pz-1qooe(
p|-lqooe(
pe-lesy
Awwnsab
JaAwab
wwab
lleysiem-pAoj)
PZ-PIp}
uiginp
uabyiop
90UBLIBAOD
Assjoyo
Boiq

seje

Ipe

wuwg

wwyg

Conclusion

. can be used to write a pass in
CompCert and to help prove the

e Performance is ~1.8x better than base Vericert, now around 2x
slower than optimised LegUp.

e Verified most passes (if-conversion, basic block generation,
symbolic execution soundness).

e Currently finishing equivalence checking proof.

github.com/ymherklotz/vericert

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

https://github.com/ymherklotz/vericert

Thank you!

Solution: Formally Verified HLS
CompCert
? E x86
Clight — == — CminorSel — 3AC —— LTL —— == aarch64

Vericert HTL ——— Verilog
RAM insertiano

e Build a verified HLS tool on top of CompCert.

e Currently only generates sequential hardware.

Defining the Equivalence Check

We have syntactic equality for expressions implying same behaviour:

o)lv o,~0,

(eo,) v
Now to compare G,=[(P,e,),~] and G, =
[(P,.e,),+]1, we can use a SAT solver:
(P, —e,n)
—

P, —>e,n-)

Naive Inplementation

Fixing Sysbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Naive Inplementation

Fixing Syabolic

Representation

On Predicate

Evaluation

Results and

Conclusion

A Few Problems Arise

¢ Very structure of guarded expressions.
¢ Representation is similar to SMT with
e Currently can contain too.

P:i=p, | PVP|P+P|P==P| -

Predicate Evaluation Can Block

1L = (LA)

e SAT solver will say equivalent.

. can block and therefore might not behave the same.

¢ For example when doing pointer equality with

¢ This requires us to define a condition for

predicates.

Naive Inplementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Naive Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

