
On Formalising Predicated Execution
and Predicate-Aware Scheduling

Yann Herklotz and John Wickerson

Imperial College London

11

What is High-Level Synthesis?
High-Level Synthesis (HLS)
Conversion from an algorithmic, sequential description in C to a
parallel hardware design in Verilog.

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

11

What is High-Level Synthesis?
High-Level Synthesis (HLS)
Conversion from an algorithmic, sequential description in C to a
parallel hardware design in Verilog.

Unreliability of HLS
We found that HLS tools had incorrect output for 1.5% of simple,
random C code.1

1 Yann Herklotz, Zewei Du, Nadesh Ramanathan, and John Wickerson. An empirical study of the
reliability of high-level synthesis tools. In 29th IEEE Annual Int. Symp. on FCCM, 2021.

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

22

Solution: Formally Verified HLS

Clight ... CminorSel 3AC LTL aarch64
x86
...

...

HTL Verilog

CompCert

Vericert
RAM insertion

• Build a verified HLS tool on top of CompCert called Vericert.

• Currently only generates sequential hardware.

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

33

Adding Instruction-Level Parallelism

Clight ... CminorSel 3AC LTL aarch64
x86
...

...

HTLRTLBlock RTLPar RTLParFU Verilog

CompCert

Vericert
scheduling pipelining

if-conversion

Add instruction level parallelism using predicated instructions in
basic blocks.

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

44

Example of Instruction Scheduling
r2 = r1 + r4;
if p1: r1 = r2 + r4;
if !p1&&!p2: r3 = r1 * r1;
if p1: p3 = r2 == r3;

r2 = r1 + r4
 || if !p1&&!p2: r3 = r1 * r1;
if p1: r1 = r2 + r4;
 || if (p1) p3 = r2 == r3;

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

55

Naïve Implementation

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

66

RTLBlock and RTLPar Syntax
ℬ ::= slist ℐ 𝒫 ::= slist (plist (slist ℐ))

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

66

RTLBlock and RTLPar Syntax
ℬ ::= slist ℐ 𝒫 ::= slist (plist (slist ℐ))

clk

r1 if(p1) r2 + r4

r2 r1 + r4

r3 if(!p2 && !p1) r1 * r1 if(p2) r1 * r4 || if(!p2) r3 * r3

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

66

RTLBlock and RTLPar Syntax
ℬ ::= slist ℐ 𝒫 ::= slist (plist (slist ℐ))

ℐ ::= nop
| if P: 𝑟 = 𝑟 + 𝑟 | ...
| if P: 𝑟 = 𝑀[𝑎]
| if P: 𝑀[𝑎] = 𝑟
| if P: 𝑝 = 𝑟 == 𝑟 | ...
| if P: exit 𝒞

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

77

Translation Validation in CompCert

RTLBlock RTLPar
scheduling

Abstr Abstr

symbolic executionsymbolic execution

equivalence check

∼

∼ ∼

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

88

Checker Implementation

• Assuming we have sequential and parallel code we want to compare.

• Symbolically execute the sequential and parallel code.

• Describe an equivalence checker for the results of symbolic
execution.

𝑅 : 𝑟 | 𝑝 | M | Exit

Σ : 𝑅 -> (𝑅 -> val) -> val

SExec : ℬ -> Σ check : Σ -> Σ -> bool

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

99

Example Execution
r2 = r1 + r4;
if p1: r1 = r2 + r4;
if !p1&&!p2: r3 = r1 * r1;
if p1: p3 = r2 == r3;

r1 ↦ (p10 → (r10+r40)+r40)
∧ (¬p10 → r10)

r2 ↦ r10+r40

r3 ↦

(¬p10 ∧ ¬p20) →

((p10 → (r10+r40)+r40)
∧ (¬p10 → r10)

) * ...)

∧ ((p10 ∨ p20) → r30)

p3 ↦ (¬p10 → p30)
∧ (p10 → (r10+r40 == ...))

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

1010

A Few Problems Arise

• Very recursive structure of guarded expressions.

• Representation is similar to SMT formulas with atoms.

• Currently atoms can contain formulas too.

𝑃 ::= p0 | 𝑃 ∨ 𝑃 | 𝑃 + 𝑃 | 𝑃 == 𝑃 | ...

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

1111

Fixing Symbolic Representation

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

1212

Execution With Flatter Representation
r2 = r1 + r4;
if p1: r1 = r2 + r4;
if !p1&&!p2: r3 = r1 * r1;
if p1: p3 = r2 == r3;

r1 ↦ {
(r10+r40)+r40, if p10

r10, if ¬p10

r2 ↦ r10+r40

r3 ↦ {
r10*r10, if ¬p10 ∧ ¬p10 ∧ ¬p20

...

p3 ↦ (¬p10 → p30)
∧ ((p10 ∨ p20) → ((r10+r40)+r40 == r30))

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

1313

As a Grammar

𝐺 ::= [(𝑃, 𝑒)]

𝑃 ::= p0 | 𝑃 ∨ 𝑃 | 𝑒 == 𝑒 | ...

𝑒 ::= r0 | 𝑒 + 𝑒 | 𝑒 * 𝑒 | 𝑒[𝑒] | ...

𝐹 ::= 𝑟 ↦ 𝐺 ; M ↦ 𝐺 ; 𝑝 ↦ 𝑃 ; Exit ↦ [(𝑃, 𝒞)]

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

1414

Defining the Equivalence Check
We have syntactic equality for expressions implying same behaviour:

(𝑒, 𝜎ℬ) ⇓ 𝑣 𝜎ℬ ∼ 𝜎𝒫

(𝑒, 𝜎𝒫) ⇓ 𝑣

Now to compare guarded expressions 𝐺ℬ = [(𝑃ℬ, 𝑒ℬ), ...] and 𝐺𝒫 =
[(𝑃𝒫 , 𝑒𝒫), ...], we can use a verified SAT solver:

(𝑃ℬ → 𝑒ℬ ∧ ...)
⟺

(𝑃𝒫 → 𝑒𝒫 ∧ ...)

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

1515

On Predicate Evaluation

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

1616

Predicate Evaluation Can Block

⊥ ⟺ (⊥ ∧ x == y)

• SAT solver will say equivalent.

• x == y can block and therefore might not behave the same.

• For example when doing pointer equality with invalid pointers.

• This requires us to define a well-formedness condition for
predicates.

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

1717

Well-Formedness of Predicates

𝑃1 ⟺ 𝑃2

• Check that predicate from the output of the schedule only contains
executable atoms.

• 𝛼(𝑃) retrieves the atoms of 𝑃.

𝛼(𝑃1) ⊇ 𝛼(𝑃2)

𝑃2 will be executable if 𝑃1 is executable as well.

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

1818

Results and Conclusion

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

1919
1

2m
m

3m
m ad

i

at
as

bi
cg

ch
ol

es
ky

co
va

ria
nc

e

do
itg

en

du
rb

in

fd
td

-2
d

flo
yd

-w
a

rs
ha

ll

ge
m

m

ge
m

ve
r

ge
su

m
m

v

he
at

-3
d

ja
co

bi
-1

d

ja
co

bi
-2

d lu

lu
dc

m
p

m
vt

nu
ss

in
ov

se
id

el
-2

d

sy
m

m

sy
r2

k

sy
rk

tr
is

ol
v

tr
m

m

m
ed

ia
n

E
xe

cu
tio

n
 ti

m
e

re
la

tiv
e

to
 V

er
ic

er
t

list

hyper

Vericert speed comparison
Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

2020

Conclusion

• SAT solver can be used to write a translation validation pass in
CompCert and to help prove the forward simulation.

• Performance is ∼1.8× better than base Vericert, now around 2×
slower than optimised LegUp.

• Verified most passes (if-conversion, basic block generation,
symbolic execution soundness).

• Currently finishing equivalence checking proof.

github.com/ymherklotz/vericert

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

https://github.com/ymherklotz/vericert

2121

Thank you!

22

Solution: Formally Verified HLS

Clight ... CminorSel 3AC LTL aarch64
x86
...

...

HTL Verilog

CompCert

Vericert
RAM insertion

• Build a verified HLS tool on top of CompCert.

• Currently only generates sequential hardware.

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

99

A Few Problems Arise

• Very recursive structure of guarded expressions.

• Representation is similar to SMT formulas with atoms.

• Currently atoms can contain formulas too.

𝑃 ::= p0 | 𝑃 ∨ 𝑃 | 𝑃 + 𝑃 | 𝑃 == 𝑃 | ...

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

1313

Defining the Equivalence Check
We have syntactic equality for expressions implying same behaviour:

(𝑒, 𝜎ℬ) ⇓ 𝑣 𝜎ℬ ∼ 𝜎𝒫

(𝑒, 𝜎𝒫) ⇓ 𝑣

Now to compare guarded expressions 𝐺ℬ = [(𝑃ℬ, 𝑒ℬ), ...] and 𝐺𝒫 =
[(𝑃𝒫 , 𝑒𝒫), ...], we can use a verified SAT solver:

(𝑃ℬ → 𝑒ℬ ∧ ...)
⟺

(𝑃𝒫 → 𝑒𝒫 ∧ ...)

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

1515

Predicate Evaluation Can Block

⊥ ⟺ (⊥ ∧ x == y)

• SAT solver will say equivalent.

• x == y can block and therefore might not behave the same.

• For example when doing pointer equality with invalid pointers.

• This requires us to define a well-formedness condition for
predicates.

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

Naïve Implementation

Fixing Symbolic

Representation

On Predicate

Evaluation

Results and

Conclusion

